Mixture model of NMR - its application to diagnosis and treatment of brain cancer

Journal title

Archives of Control Sciences




No 4


Divisions of PAS

Nauki Techniczne


Committee of Automatic Control and Robotics PAS




DOI: 10.2478/v10170-010-0026-3 ; ISSN 1230-2384


Archives of Control Sciences; 2010; No 4


R. de Graff (2007), In vivo NMR spectroscopy. ; Jansen J. (2007), 1H MR spectroscopy of the brain: Absolute quantification of metabolites, Radiology, 240, 318. ; Keeler J. (2005), Understanding NMR spectroscopy. ; Savitzky A. (1964), Smoothing and differentiation of data by Ssimplified least squares procedures, Analytical Chemistry, 36, 8, 1627. ; Polański A. (2007), Bioinformatics. ; Millar P. (2006), Using the Bayesian information criterion to judge models and statistical significance, null. ; S. Mc Kinley and M. Levine: Cubic spline interpolation. Math 45: Linear Algebra, 1992. ; Pietrowska M. (2010), Optimizing of MALDI-ToF-based low-molecular-weight serum proteome pattern analysis in detection of breast cancer patients; the effect of albumin removal on classification performance, Neoplasma, 56, 6, 537. ; webpage: <a target="_blank" href=''></a> ; Gong J. (1992), A fast T1 algorithm, Magn. Reson. Imaging, 10, 623. ; Shaw D. (1976), Fourier transform NMR spectroscopy. ; Poullet J-B. (2007), An automated quantitation of short echo time MRS spectra in an open source software environment:, AQSES NMR in Biomedicine, 20, 5, 493. ; Stefan D. (2009), Quantitation of magnetic resonance spectroscopy signals: the jMRUI software package, Measurement Science and Technology, 20, 104035. ; Dempster A. (1977), Maximum likelihood from incomplete data wia the EM algorithm, Journal of the Royal Statistical Society B, 39, 1, 1. ; (1988), Mixture models. ; Cabanes E. (2001), Optimization of residual water signal removal by HLSVD on simulated short echo time proton MR spectra of the human brain, J. of Magnetic Resonance, 150, 2.