### Details

#### Title

The unique solvability of stationary and non-stationary incompressible melt models in the case of their linearization#### Journal title

Archives of Control Sciences#### Yearbook

2021#### Volume

vol. 31#### Issue

No 2#### Affiliation

Kazhikenova, Saule Sh. : Head of the Department of Higher Mathematics, Karaganda Technical University, Kazakhstan#### Authors

#### Keywords

Navier–Stokes equations ; hydrodynamic ; approximations ; mathematical models ; incompressible melt#### Divisions of PAS

Nauki Techniczne#### Coverage

307-332#### Publisher

Committee of Automatic Control and Robotics PAS#### Bibliography

[1] C. Conca: On the application of the homogenization theory to a class of problems arising in fluid mechanics.*J. Math. Purs at Appl.*, 64(1), (1985), 31–35.

[2] M.R. Malik, T.A. Zang, and M.Y. Hussaini:Aspectral collocation method for the Navier–Stokes equations.

*J. Comput. Phys*., 61(1), (1985), 64–68.

[3] P.M. Gresho: Incompressible fluid dynamics: some fundamental formulation issues.

*Annu. Rev. Fluid Mech*., 23, Palo Alto, Calif., (1991), 413-453.

[4] R. Lakshminarayana, K. Dadzie, R. Ocone, M. Borg, and J. Reese: Recasting Navier–Stokes equations.

*J. Phys. Commun*., 3(10), (2019), 13– 18, DOI: 10.1088/2399-6528/ab4b86.

[5] S.Sh. Kazhikenova, S.N. Shaltakov, D. Belomestny, and G.S. Shai- hova: Finite difference method implementation for numerical integration hydrodynamic equations melts.

*Eurasian Physical Technical Journal*, 17(1), (2020), 50–56.

[6] O.A. Ladijenskaya:

*Boundary Value Problems of Mathematical Physics*. Nauka, Moscow, 1973.

[7] Z.R. Safarova: On a finding the coefficient of one nonlinear wave equation in the mixed problem.

*Archives of Control Sciences,*30(2), (2020), 199–212, DOI: 10.24425/acs.2020.133497.

[8] A. Abramov and L.F. Yukhno: Solving some problems for systems of linear ordinary differential equations with redundant conditions.

*Comput. Math. and Math. Phys*., 57 (2017), 1285–1293, DOI: 10.7868/ S0044466917080026.

[9] K. Yasumasa and T. Takahico: Finite-element method for three-dimensional incompressible viscous flow using simultaneous relaxation of velocity and Bernoulli function. 1st report flow in a lid-driven cubic cavity at Re = 5000.

*Trans. Jap. Soc. Mech. Eng*., 57(540), (1991), 2640–2647.

[10] H. Itsuro, Î. Hideki, T. Yuji, and N. Tetsuji: Numerical analysis of a flow in a three-dimensional cubic cavity.

*Trans. Jap. Soc. Mech. Eng*., 57(540), (1991), 2627–2631.

[11] X. Yan, L. Wei, Y. Lei, X. Xue, Y.Wang, G. Zhao, J. Li, and X. Qingyan: Numerical simulation of Meso-Micro structure in Ni-based superalloy during liquid metal cooling.

*Proceedings of the 4th World Congress on Integrated Computational Materials Engineering. The Minerals, Metals & Materials Series.*Ð. 249–259, DOI: 10.1007/978-3-319-57864-4_23.

[12] T.A. Barannyk, A.F. Barannyk, and I.I. Yuryk: Exact Solutions of the nonliear equation.

*Ukrains’kyi Matematychnyi Zhurnal,*69(9), (2017), 1180–1186, http://umj.imath.kiev.ua/index.php/umj/article/view/1768.

[13] S. Tleugabulov, D. Ryzhonkov, N. Aytbayev, G. Koishina, and G. Sul- tamurat: The reduction smelting of metal-containing industrial wastes.

*News of the Academy of Sciences of the Republic of Kazakhstan*, 1(433), (2019), 32–37, DOI: 10.32014/2019.2518-170X.3.

[14] S.L. Skorokhodov and N.P. Kuzmina: Analytical-numerical method for solving an Orr–Sommerfeld-type problem for analysis of instability of ocean currents.

*Zh. Vychisl. Mat. Mat. Fiz.*, 58(6), (2018), 1022–1039, DOI: 10.7868/S0044466918060133.

[15] N.B. Iskakova, A.T. Assanova, and E.A. Bakirova: Numerical method for the solution of linear boundary-value problem for integrodifferential equations based on spline approximations.

*Ukrains’kyi Matematychnyi Zhurnal*, 71(9), (2019), 1176–1191, http://umj.imath.kiev.ua/index.php/ umj/article/view/1508.

[16] S.Sh. Kazhikenova, M.I. Ramazanov, and A.A. Khairkulova: epsilon- Approximation of the temperatures model of inhomogeneous melts with allowance for energy dissipation.

*Bulletin of the Karaganda University- Mathematics*, 90(2), (2018), 93–100, DOI: 10.31489/2018M2/93-100.

[17] J.A. Iskenderova and Sh. Smagulov: The Cauchy problem for the equations of a viscous heat-conducting gas with degenerate density.

*Comput. Maths Math. Phys*. Great Britain, 33(8), (1993), 1109–1117.

[18] A.M. Molchanov:

*Numerical Methods for Solving the Navier–Stokes Equations*. Moscow, 2018.

[19] Y. Achdou and J.-L. Guermond: Convergence Analysis of a finite element projection / Lagrange-Galerkin method for the incompressible Navier–Stokes equations.

*SIAM Journal of Numerical Analysis*, 37 (2000), 799–826.

[20] M.P. de Carvalho, V.L. Scalon, and A. Padilha: Analysis of CBS numerical algorithm execution to flow simulation using the finite element method.

*Ingeniare Revista chilena de Ingeniería*, 17(2), (2009), 166–174, DOI: 10.4067/S0718-33052009000200005.

[21] G. Muratova, T. Martynova, E. Andreeva, V. Bavin, and Z-Q. Wang: Numerical solution of the Navier–Stokes equations using multigrid methods with HSS-based and STS-based smoother.

*Symmetry,*12(2), (2020), DOI: 10.3390/sym12020233.

[22] M. Rosenfeld and M. Israeli: Numerical solution of incompressible flows by a marching multigrid nonlinear method.

*AIAA 7th Comput. Fluid Dyn. Conf.: Collect. Techn. Pap.*, New-York, (1985), 108–116.92.