Details

Title

Helicity of convective flows from localized heat source in a rotating layer

Journal title

Archive of Mechanical Engineering

Yearbook

2017

Volume

vol. 64

Numer

No 2

Affiliation

Sukhanovskii, A. : Institute of Continuous Media Mechanics, Perm, Russia ; Evgrafova, A. : Institute of Continuous Media Mechanics, Perm, Russia ; Popova, E. : Institute of Continuous Media Mechanics, Perm, Russia

Authors

Keywords

helicity of convective flows ; heat source in rotating layer

Divisions of PAS

Nauki Techniczne

Coverage

177-188

Publisher

Polish Academy of Sciences, Committee on Machine Building

Bibliography

[1] G.P. Bogatyrev. Excitation of a cyclonic vortex or a laboratory model for a tropical cyclone. Journal of Experimental and Theoretical Physics Letters, 51(11):630–633, 1990.
[2] G.P. Bogatyrev and B.L. Smorodin. Physical model of the rotation of a tropical cyclone. Journal of Experimental and Theoretical Physics Letters, 63(1):28–32, 1996. doi: 10.1134/1.566958.
[3] G.P. Bogatyrev, I.V. Kolesnichenko, G.V. Levina and A.N. Sukhanovsky. Laboratory model of generation of a large-scale spiral vortex in a convectively unstable rotating fluid. Izvestiya, Atmospheric and Oceanic Physics, 42(4): 423–429, 2006. doi: 10.1134/S0001433806040025.
[4] V. Batalov, A. Sukhanovsky and Frick P. Laboratory study of differential rotation in a convective rotating layer. Geophysical & Astrophysical Fluid Dynamics, 104(4):349–368, 2010. doi: 10.1080/03091921003759876.
[5] A. Sukhanovskii, A. Evgrafova and E. Popova. Laboratory study of a steady-state convective cyclonic vortex. Quarterly Journal of the Royal Meteorological Society, 142(698):2214–2223, 2016. doi: 10.1002/qj.2823.
[6] S.S. Moiseev, R.Z. Sagdeev, A.V. Tur, G.A. Khomenko, and A.M. Shukurov. Physical mechanism of amplification of vortex disturbances in the atmosphere, Soviet Phys. Dokl. 28:926–928, 1983.
[7] E. Levich and E. Tzvetkov. Helical cyclogenesis. Physics Letters A, 100(1):53–56, 1984. doi: 10.1016/0375-9601(84)90354-2.
[8] E. Levich and E. Tzvetkov. Helical inverse cascade in three-dimensional turbulence as a fundamental dominant mechanism in mesoscale atmospheric phenomena. Physics Reports, 128(1): 1–37, 1985. doi: 10.1016/0370-1573(85)90036-5.
[9] D.K. Lilly. The structure, energetics and propagation of rotating convective storms. Part II: Helicity and storm stabilization. Journal of Atmospheric Sciences, 43(2):126–140, 1986.
[10] A. Eidelman, T. Elperin, I. Gluzman, and E. Golbraikh. Helicity of mean and turbulent flow with coherent structures in Rayleigh-Bénard convective cell. Physics of Fluids, 26(6), 2014. doi: 10.1063/1.4881939.
[11] F. Scarano and M.L. Riethmuller. Advances in iterative multigrid PIV image processing. Experiments in Fluids, 29(Suppl1):S051–S060, 2000. doi: 10.1007/s003480070007.
[12] A. Sukhanovskii, A. Evgrafova and E. Popova. Horizontal rolls over localized heat source in a cylindrical layer. Physica D: Nonlinear Phenomena, 316:23–33, 2016. doi: 10.1016/j.physd.2015.11.007.
[13] H.K. Moffat. Magnetic Field Generation in Electrically Conducting Fluids. Cambridge University Press, Cambridge, 1978.
[14] R. Stepanov, E. Golbraikh, P. Frick and A. Shestakov. Hindered energy cascade in highly helical isotropic turbulence. Physical Review Letters, 115(23):234501, 2015. doi: 10.1103/PhysRevLett.115.234501.
[15] A.V. Evgrafova, G.V. Levina and A.N. Sukhanovskii. Study of vorticity and helicity distribution in advective flow with secondary structures. Computational Continuum Mechanics, 6(4):451–459, 2013. doi: 10.7242/1999-6691/2013.6.4.49 (in Russian).

Date

2017

Type

Artykuły / Articles

Identifier

DOI: 10.1515/meceng-2017-0011 ; ISSN 0004-0738, e-ISSN 2300-1895

Source

Archive of Mechanical Engineering; 2017; vol. 64; No 2; 177-188

References

Batalov (2010), Laboratory study of differential rotation in a convective rotating layer Geophysical Astrophysical, Fluid Dynamics, 104, 349, doi.org/10.1080/03091921003759876 ; Bogatyrev (2006), Laboratory model of generation of a large - scale spiral vortex in a convectively unstable rotating fluid Atmospheric and, Oceanic Physics, 42, 423, doi.org/10.1134/S0001433806040025 ; Sukhanovskii (2016), Horizontal rolls over localized heat source in a cylindrical layer :, Physica D Nonlinear Phenomena, 316, doi.org/10.1016/j.physd.2015.11.007 ; Eidelman (2014), Helicity of mean and turbulent flow with coherent structures in Rayleigh - Bénard convective cell, Physics of Fluids, 26, doi.org/10.1063/1.4881939 ; Stepanov (2015), Hindered energy cascade in highly helical isotropic turbulence, Physical Review Letters, 115, doi.org/10.1103/Phys-RevLett.115.234501 ; Bogatyrev (1996), Physical model of the rotation of a tropical cyclone of, Journal Experimental and Theoretical Physics Letters, 63, 28, doi.org/10.1134/1.566958 ; Levich (1984), Helical cyclogenesis, Physics Letters A, 100, 53, doi.org/10.1016/0375-9601(84)90354-2 ; Evgrafova (2013), Study of vorticity and helicity distribution in advective flow with secondary structures Computational Continuum, Mechanics, 6, 451, doi.org/10.7242/1999-6691/2013.6.4.49(inRussian) ; Bogatyrev (1990), Excitation of a cyclonic vortex or a laboratory model for a tropical cyclone of, Journal Experimental and Theoretical Physics Letters, 51, 630. ; Sukhanovskii (2016), Laboratory study of a steady - state convective cyclonic vortex, Quarterly Journal of the Royal Meteorological Society, 142, doi.org/10.1002/qj.2823 ; Lilly (1986), The structure , energetics and propagation of rotating convective storms Part II : Helicity and storm stabilization of, Journal Atmospheric Sciences, 43, 126. ; Scarano (2000), Advances in iterative multigrid PIV image processing Experiments in, Fluids, 29, 1, doi.org/10.1007/s003480070007
×