Nauki Techniczne

Archives of Mining Sciences


Archives of Mining Sciences | 2021 | vol. 66 | No 2 |

Pobierz PDF Pobierz RIS Pobierz Bibtex


Salt caverns are used for the storage of natural gas, LPG, oil, hydrogen, and compressed air due to rock salt advantageous mechanical and physical properties, large storage capacity, flexible operations scenario with high withdrawal and injection rates. The short- and long-term mechanical behaviour and properties of rock salt are influenced by mineral content and composition, structural and textural features (fabrics). Mineral composition and fabrics of rock salt result from the sedimentary environment and post sedimentary processes. The impurities in rock salt occur in form of interlayers, laminae and aggregates. The aggregates can be dispersed within the halite grains or at the boundary of halite grains. Mineral content, mineral composition of impurities and their occurrence form as well as halite grain size contribute to the high variability of rock salt mechanical properties. The rock or mineral impurities like claystone, mudstone, anhydrite, carnallite and sylvite are discussed. Moreover, the influence of micro fabrics (in micro-scale) like fluid inclusions or crystals of other minerals on rock salt mechanical performance is described. In this paper the mechanical properties and behaviour of rock salt and their relation to mineral composition and fabrics are summarised and discussed. The empirical determination of impurities and fabrics impact on deformation mechanism of rock salt, qualitative description and formulation of constative models will improve the evaluation and prediction of cavern stability by numerical modelling methods. Moreover, studying these relations may be useful in risk assessment and prediction of cavern storage capacity.
Przejdź do artykułu


[1] F . Crotogino, Compressed Air Energy Storage in Underground Formations. Letcher T.M. (ed.), Storing Energy, Elsevier, 391-409 (2016).
[2] S. Donadei, G.S. Schneider, Compressed Air Energy Storage in Underground Formations. Letcher T.M. (ed.), Storing Energy, Elsevier, 113-133 (2016).
[3] J.G. Speight, Recovery, storage, and transportation. Speight J.G. (ed.) Natural Gas (Second Edition), Gulf Professional Publishing, 149-186 (2019).
[4] J. Chen, D. Lu, W. Liu, J. Fan et al., Stability study and optimization design of small-spacing two-well (SSTW) salt caverns for natural gas storages. Journal of Energy Storage 27, 101131 (2020). DOI:
[5] S. Mokhatab, W.A. Poe, J.Y. Mak, Natural gas fundamentals. In: Mokhatab S., Poe W.A., Mak J.Y. (eds.), Handbook of natural gas transmission and processing (Fourth Edition), Gulf Professional Publishing, 1-35 (2019).
[6] H. Yin, C. Yang, H. Ma, Study on damage and repair mechanical characteristics of rock salt under uniaxial compression. Rock Mech. Rock Eng. 52, 659-671 (2019). DOI:
[7] Q. Zhang, J. Liu, L. Wang, M. Luo et al., Impurity efects on the mechanical properties and permeability characteristics of salt rock. Energies 13, 1366 (2020). DOI:
[8] K.M. Looff, K.M. Looff, C.A. Rautman, Salt spines, boundary shear zones and anomalous salts: their characteristics, detection and influence on salt dome storage caverns. SMRI Spring Technical Conference, April 26-27, 2010, Grand Junction, Colorado, (2010).
[9] K.M. Looff, K.M. Looff, C.A. Rautman, Inferring the geologic significance and potential imapact of salt fabric and anomalous salt on the development and long-term operation of salt storage caverns on gulf coast salt domes. SMRI Spring Technical Conference, 26-27 April 2010, Grand Junction, Colorado (2010).
[10] Q. Zhang, Z. Song, J. Wang, Y. Zhang et al., Creep properties and constitutive model of salt rock. Advances in Civil Engineering 8867673 (2021). DOI:
[11] J.K. Warren, Evaporites: sediments, resources and hydrocarbons. Springer Springer-Verlag Berlin Heidelberg (2006).
[12] J.K. Warren, Salt usually seals, but sometimes leaks: Implications for mine and cavern stabilities in the short and long term. Earth-Science Reviews 165, 302-341 (2017). DOI:
[13] A. Luangthip, N. Wilalak, T. Thongprapha, K. Fuenkajorn, Effects of carnallite content on mechanical properties of Maha Sarakham rock salt. Arab. J. Geosc. 10, 149, (2017).
[14] R .C.M. Franssen, C.J. Spiers, Deformation of polycrystalline salt in compression and in shear at 250-350°C. In: R.J. Knipe, E.H. Rutter (eds), Deformation mechanisms, rheology and tectonics. Geological Society, London, Special Publications 54, 201-213 (1990).
[15] S.V. Raj, G.M. Pharr, Effect of temperature on the formation of creep substructure in sodium chloride single crystal. J. Amer. Cer. Soc. 75, 347-352 (1992).
[16] P.E. Senseny, J.W. Handin, F.D. Hansen, J.E. Russell, Mechanical behavior of rock salt: phenomenology and micro-mechanisms. Int. J. Rock Mech. Min. Sc. 29, 363-378 (1992).
[17] M.S. Bruno, Geomechanical analysis and design considerations for thin-bedded salt caverns: final report. Arcadia, CA: Terralog Technologies USA (2005).
[18] M.S. Bruno, L. Dorfmann, G. Han K, Lao. Et al., 3D geomechanical analysis of multiple caverns in bedded salt. SMRI Fall Technical Conference, 1-5 October 2005, Nancy, France, 1-25 (2005).
[19] K.L. De Vries, K.D. Mellegard, G.D. Callahan, W.M. Goodman, Cavern roof stability for natural gas storage in bedded salt. RESPEC final report 26 September 2002 – 31 March 2005 for United States Department of Energy National Energy Technology Laboratory (2005).
[20] C. Jie, L. Dan, L. Wei, F. Jinyang et al., Stability study and optimization design of smallspacing two-well (SSTW) salt caverns for natural gas storage. J. Ener. Stor. 27, 101131 (2020). DOI:
[21] J.L. Li, Y. Tang, X.L. Shi, W. Xu et al., Modelling the construction of energy storage salt caverns in bedded salt. Appl. Energ. 255, 113866 (2019). DOI:
[22] T . Wang, X. Yan, H. Yang, X. Yang et al., A new shape design method of salt cavern used as underground gas storage. Appl. Energ. 104, 50-61 (2013). DOI:
[23] T .T. Wang, C.H. Yang, X.L. Shi, H.L. Ma, Y.P. et al., Failure analysis of thick interlayer from leaching of bedded salt caverns. Int. J. Rock Mech. Min. Sci. 73, 175-183 (2015). DOI:
[24] T . Wang, C. Yang, H. Ma, Y. Li et al., Safety evaluation of salt cavern gas storage close to an old cavern. Int. J. Rock Mech. Min. Sci. 83, 95-106 (2016). DOI:
[25] Y . Wang, J. Liu, Critical length and collapse of interlayer in rock salt natural gas storage. Adv. Civ. Eng., Article ID 8658501 (2018). DOI:
[26] H. Yin, C. Yang, H. Ma, X. Shi et al., Stability evaluation of underground gas storage salt caverns with micro-leakage interlayer in bedded rock salt of Jintan, China. Acta Geotech. 15, 549-563 (2020). DOI:
[27] G. Zhang, Y. Li, J.J.K. Daemen, C. Yang et al., Geotechnical feasibility analysis of compressed air energy storage (CAES) in bedded salt formations: a case study in Huai’an City, China. Rock Mech. Rock Eng. 48, 5, 2111-2127 (2015). DOI:
[28] N . Zhang, X.L. Shi, T.T. Wang, C. Yang et al., Stability and availability evaluation of underground strategic petroleum reserve (SPR) caverns in bedded rock salt of Jintan, China. Energy 134, 504-514 (2017). DOI:
[29] J.L. Li, X. Shi, C. Yang, Y. Li et al., Repair of irregularly shaped salt cavern gas storage by re-leaching under gas blanket. J. Nat. Gas Sci. Eng. 45, 848-859 (2017). DOI:
[30] K.M. Looff, The Impact of Anomalous Salt and Boundary Shear Zones on Salt Cavern Geometry, Cavern Operations, and Cavern Integrity. American Gas Association Operations Conference 2-5 May 2017, Orlando, Florida (2017).
[31] J. Li, X. Shi, C. Yang, Y. Li et al., Mathematical model of salt cavern leaching for gas storage in high insoluble salt formations. Sci. Rep. 8, 372, 1-12 (2018). DOI:
[32] Y . Charnavel, J. O’Donnell, T. Ryckelynck, Solution Mining at Stublach. SMRI Spring Technical Conference 27-28 April 2015 Rochester, New York, USA (2015).
[33] K. Looff, J. Duffield, K. Looff, Edge of Salt Definition for Salt Domes and Other Deformed Salt Structures – Geologic and Geophysical Considerations. SMRI Spring Technical Conference 27-30 April 2003, Houston, Texas, USA (2003).
[34] L.H. Gevantman (ed.), Physical properties data for rock salt. Monograph 161, U.S. Deptartment of the Commerce, National Bureau of Standards, Government Printing Office, Washington D.C. (1981).
[35] A. Garlicki, Salt Mines at Bochnia and Wieliczka. Przegląd Geologiczny 56, 8/1, 663-669 (2008).
[36] J. Wachowiak, Poziomy mineralne w solach cechsztyńskich wysadu solnego Kłodawa jako narzędzie korelacji litostratygraficznej. Kwartalnik AGH – Geologia 36, 2, 367-393 (2010).
[37] D .H. Kupfer, Problems associated with anomalous zones in Louisiana salt stocks, USA. In: A.H. Coogan and L. Hauber, eds., Fifth Symposium of Salt, Hamburg Germany, June 1978, Northern Ohio Geological Society, Cleveland 1, 119-134 (1980).
[38] D .H. Kupfer, Anomalous features in the Five Island Salt Stocks, Louisiana. Gulf Coast Association of Geological Societies Transactions 40, 425-437 (1990).
[39] Z . Schléder, J.L. Urai, Microstructural evolution of deformation-modified primary halite from the Middle Triassic Röt Formation at Hengelo, The Netherlands. Int. J. Earth Sci. (Geol Rundsch) 94, 5-6, 941-955 (2005). DOI:
[40] J.L. Urai, Z. Schléder, C.J. Spiers, P.A. Kukla, Flow and transport properties of saltrocks. In: R. Littke, U. Bayer, D. Gajewski, S. Nelskamp (eds.) Dynamics of complex intracontinental basins: The Central European Basin System. Berlin: Springer, 277-90 (2008).
[41] J.L. Urai, C.J. Spiers, The effect of grain boundary water on deformation mechanisms and rheology of rocksalt during long-term deformation. In: M. Wallner, K. Lux, W. Minkley, H. Hardy (eds.), Proceedings of the 6th conference on the mechanical behavior of salt, Hannover, Germany (2007).
[42] M. Azabou, A. Rouabhi, L. Blanco-Martìn, Effect of insoluble materials on the volumetric behavior of rock salt. J. Rock Mech. Geotech. Eng. 13, 1, 84-97 (2021). DOI:
[43] R .K. Dubey, Bearing of structural anisotropy on deformation and mechanical response of rocks: an experimental example of rocksalt deformation under variable compression rates. J. Geol. Soc. India 91, 109-114 (2018). DOI:
[44] Y. Li, W. Liu, C. Yang, J.J.K. Daemen, Experimental investigation of mechanical behavior of bedded rock salt containing inclined interlayer. Int. J. Rock Mech. Min. Sci. 69, 39-49 (2014). DOI:
[45] W . Liang, C. Yang, Y. Zhao, M.B. Dusseault, J. Liu, Experimental investigation of mechanical properties of bedded salt rock. Int. J. Rock Mech. Min. Sci. 44, 3, 400-411 (2007). DOI:
[46] W . Liu, Z. Zhang, J. Fan, D. Jiang, J.J.K. Daemen, Research on the Stability and Treatments of Natural Gas Storage Caverns with Different Shapes in Bedded Salt Rocks. IEEE Access, 8, 18995-19007 (2020). DOI: https://doi. org/10.1109/ACCESS.2020.2967078
[47] K.D. Mellegard, L.A. Roberts, G.D. Callahan, Effect of sylvite content on mechanical properties of potash. Pierre Bérest, Mehdi Ghoreychi, Faouzi Hadj-Hassen, Michel Tijani (eds.) Mechanical Behaviour of Salt VII Edition 1st Edition, Imprint CRC Press (2012).
[48] D .E. Munson, Constitutive model of creep in rock salt applied to underground room closure. Int. J. Rock Mech. Min. Sci. 34, 233-247 (1997). DOI:
[49] A. Pouya, Correlation between mechanical behaviour and petrological properties of rock salt. Proceedings of the 32nd US Symposium on Rock Mechanics, USRMS (1991).
[50] H. Alkan, Y. Cinarb, G. Pusch, Rock salt dilatancy boundary from combined acoustic emission and triaxial compression tests. Int. J. Rock Mech. Min. Sci. 44, 108-119 (2007). DOI:
[51] Von Sambeek L., Ratigan J.L., Hansen F.D., Dilatancy of Rock Salt in Laboratory Tests. Int. J. Rock Mech. Min. Sci. & Geomech. Abstr. 30, 7, 735-738 (1993). DOI:
[52] U. Hunsche, A. Hampel, Rock salt – The mechanical properties of the host rock material for a radioactive waste repository. Eng. Geol. 52, 271-291 (1999). DOI:
[53] O . Schulze, T. Popp, H. Kern, Development of damage and permeability in deforming rock salt. Eng. Geol. 61, 163-180 (2001). DOI:
[54] H. Moriya, T. Fujita, H. Niitsum, Analysis of fracture propagation behavior using hydraulically induced acoustic emissions in the Bernburg salt mine, Germany. Int. J. Rock Mech. Min. Sci. 43, 49-57 (2006). DOI:
[55] W . Liang, C. Zhang, H. Gao, X. Yang et al., Experiments on mechanical properties of salt rocks under cycling loading. J. Rock Mech. Geotech. Eng. 4, 1, 54-61 (2012). DOI:
[56] C. Jie, J. Zhang, S. Ren, L. Li, L. Yin, Determination of damage constitutive behaviour for rock salt under uniaxial compress ion condition with acoustic emission. The Open Civil Engineering Journal 9, 75-81 (2015). DOI:
[57] H. Mansouri, R. Ajalloeian, Mechanical behavior of salt rock under uniaxial compression and creep tests. Int. J. Rock Mech. Min. Sci. 110, 19-27 (2018). DOI:
[58] D . Flisiak, Laboratory testing of geomechanical properties for selected Permian rock salt deposits. Miner. Resour. Manag. 24, 121-140 (2008).
[59] C. Yang, T. Wang, Y. Li, H. Yang et al., Feasibility analysis of using abandoned salt caverns for large-scale underground energy storage in China. Appl. Energ. 137, 467-481 (2015). DOI: 2014.07.048
[60] G. Speranza, A. Vona, S. Vinciguerra, C. Romano, Relating natural heterogeneities and rheological properties of rocksalt: New insights from microstructural observations and petrophyisical parameters on Messinian halites from the Italian Peninsula. Tectonophysics 666, 103-120 (2016). DOI:
[61] Y.-L. Zhao, W. Wan, Mechanical properties of bedded rock salt. Electron. J. Geotech. Eng. 19, 9347-9353 (2014).
[62] M. Kolano, D. Flisiak, Comparison of geo-mechanical properties of white rock salt and pink rock salt in Kłodawa salt diaper. Studia Geotechnica et Mechanica 35, 1, 119-127 (2013). DOI:
[63] K. Cyran, Tectonics of Miocene salt series in Poland. PhD thesis, AGH University of Science and Technology, Cracow (2008).
[64] D . Flisiak, K. Cyran, Właściwości geomechaniczne mioceńskich soli kamiennych. Biuletyn Państwowego Instytutu Geologicznego 429, 43-49 (2008).
[65] J. Chen, C. Du, D. Jiang, J. Fan, J. He, The mechanical properties of rock salt under cyclic loading-unloading experiments. Geomechanics and Engineering 10, 3, 325-334 (2016). DOI:
[66] U. Hunsche, Determination of the dilatancy boundary and damage up to failure for four types of rock salt at different stress geometries. In: M. Aubertin, H.R. Hardy (eds.), Proceedings of the fourth conference on the mechanical behaviour of salt, 17-18 June, Montreal. Clausthal, Trans Tech. Publications; 163-7 (1996).
[67] C.J. Spiers, N.L. Carter, Microphysics of rocksalt flow in nature. In: Aubertin M, Hardy HR, editors. The mechanical behavior of salt proceedings of the 4th conference, Trans Tech. Publ. Series on Rock and Soil Mechanics, 22, 15-128 (1998).
[68] J.L. Ratigan, L.L. von Sambeek, K.L. DeVries, The influence of seal design on the development of the disturbed rock zone in the WIPP alcove seal tests. RSI-0400, Sandia National Laboratories, Albuquerque, USA (1991).
[69] U.E. Hunsche, Failure behaviour of rock salt around underground cavities. In: H. Kakihana (ed.), Proceedings of the Seventh Symposium on Salt, Kyoto, Elsevier Science Publisher, Amsterdam, 1, 59-65 (1993).
[70] Z . Zhang, D. Jiang, W. Liu, J. Chen et al., Study on the mechanism of roof collapse and leakage of horizontal cavern in thinly bedded salt rocks. Environ. Earth. Sci. 78, 10, 292 (2019). DOI:
[71] R . Dadlez, W. Jaroszewski, Tektonika. Wydawnictwo Naukowe PWN Warszawa (1994).
[72] R .D. Lama, V.S. Vutukuri, Handbook on mechanical properties of rocks. Trans. Tech. Publ. III, Zurich, Switzeland (1978).
[73] K. Cyran, T. Toboła, P. Kamiński, Wpływ cech petrologicznych na właściwości mechaniczne soli kamiennej z LGOM (Legnicko-Głogowskiego Okręgu Miedziowego). Biuletyn Państwowego Instytutu Geologicznego 466, 51-63 (2016).
[74] A. Łaszkiewicz, Minerały i skały solne. Prace Muzeum Ziemi 11, 101-188 (1967).
[75] W . Liu, Y.P. Li, Y.S. Huo, X.L. Shi et al., Analysis on deformation and fracture characteristics of wall rock interface of underground storage caverns in salt rock formation. Rock and Soil Mechanics 34, 6, 1621-1628 (2013).
[76] J. Poborski, K. Skoczylas-Ciszewska, O miocenie w strefie nasunięcia karpackiego w okolicy Wieliczki i Bochni. Rocznik Polskiego Towarzystwa Geologicznego 33, 3, 340-347 (1963).
[77] L. Wei, L. Yinping, Y. Chunhe, H. Shuai, W. Bingwu, Analysis of Physical and Mechanical Properties of Impure Salt Rock. 47th U.S. Rock Mechanics/Geomechanics Symposium, San Francisco, California, June 2013, ARMA- 2013-336 (2013).
[78] C.J. Peach, C.J. Spiers, Influence of crystal plastic deformation on dilatancy and permeability development in synthetic salt rock. Tectonophysics 256 (1-4), 101-128 (1996). DOI:
[79] G.M. Pennock, M.R. Drury, C.J. Spiers, The development of subgrain misorientations with strain in dry synthetic NaCl measured using EBSD. J. Struct. Geol. 27, 12, 2159-2170 (2005). DOI: jsg.2005.06.013
[80] G.M. Pennock, M.R. Drury, C.J. Peach, C.J. Spiers, The influence of water on deformation microstructures and textures in synthetic NaCl measured using EBSD. J. Struct. Geol. 28, 4, 588-601 (2006). DOI:
[81] J.H. Ter Heege, J.H.P. De Bresser, C.J. Spiers, Rheological behaviour of synthetic rock salt: the interplay between water, dynamic recrystallisation and deformation mechanisms. J. Struct. Geol. 27, 948-963 (2005). DOI:
[82] J.H. Ter Heege, J.H.P. De Bresser, C.J. Spiers, Dynamic recrystallisation of wet synthetic polycrystalline halite: dependence of grain size distribution on flow stress, temperature and strain. Tectonophysics 396, 1-2, 35-57 (2005). DOI:
[83] N .L. Carter, F.D. Hansen, Creep of rock salt. Tectonophysics 92, 275-333 (1983). DOI:
[84] S.J. Bauer, B. Song, B. Sanborn, Dynamic compressive strength of rock salts. Int. J. Rock Mech. Min. Sci. 113, 112-120 (2019). DOI:
[85] K. Liang, L.Z. Xie, B. He, P. Zhao et al., Effects of grain size distributions on the macro-mechanical behavior of rock salt using micro-based multiscale methods. Int. J. Rock Mech. Min. Sci. 138, 104592 (2021). DOI:
[86] S.Y. Li, J.L. Urai, Rheology of rock salt for salt tectonics modelling. Petrol. Sci. 13, 712-724 (2016). DOI:
[87] Z . Schléder, J.L. Urai, Deformation and recrystallisation mechanisms in mylonitic shear zones in naturally deformed extrusive Eocene-Oligocene rocksalt from Eyvanekey plateau and Garmsar hills (central Iran). J. Struct. Geol. 29, 241-255 (2007). DOI:
[88] C.J. Spiers, PM.T.M. Schutjens, R.H. Brzesowsky, C.J. Peach et al., Experimental determination of constitutive parameters governing creep of rocksalt by pressure solution. In: R.J. Knipe, E.H. Rutter (eds.) Deformation mechanisms, rheology and tectonics. Geological Society, London, Special Publications 54, 1, 215-27 (1990).
[89] J.L. Urai, C.J. Spiers, H.J. Zwart, G.S. Lister, Weakening of rock salt by water during long-term creep. Nature 324, 554-557 (1986). DOI:
[90] J.L. Urai, C.J. Spiers, C.J. Peach, R.C.M.W. Franssen, J.L. Liezenberg, Deformation mechanisms operating in naturally deformed halite rocks as deduced from microstructural investigations. Geology en Mijnbouw 66, 165-176 (1987).
[91] R .K. Dubey, V.K. Gairola, Influence of structural anisotropy on the uniaxial compressive strength of pre-fatigued rocksalt from Himachal Pradesh, India. Int. J. Rock Mech. Min. Sci. 37, 993-999 (2000). DOI:
[92] R .K. Dubey, V.K. Gairola, Influence of structural anisotropy on creep of rocksalt from Simla Himalaya, India: an experimental approach. J. Struct. Geol. 30, 6, 710-718 (2008). DOI:
[93] R .A. Lebensohn, P.R. Dawson, H.M. Kern, H.R. Wenk, Heterogeneous deformation and texture development in halite polycrystals: comparison of different modelling approaches and experimental data. Tectonophysics 370 (1-4), 287-311 (2003). DOI:
[94] J.R. Hirth, L. Kubin (Eds), Dislocations in solids. The 30th anniversary volume. Elsevier (2009).
[95] M.P.A. Jakson, M.R. Hudec, Salt tectonics principles and practice. Cambridge University Press (2017).
[96] D .R. Askeland, P.P. Fulay, W.J. Wright, The Science and Engineering of Materials. Cengage Learning Inc. (2010).
[97] J. Wichert, H. Konietzky, C. Jakob, Salt Mechanics. TU Bergakademie Freiberg, Institut für Geotechnik, Freiberg (2018).
[98] G. Wang, A new constitutive creep-damage model for salt rock and its characteristics. Int. J. Rock Mech. Min. Sci. 41, 61-67 (2004). DOI:
[99] Z . Hou, Untersuchungen zum Nachweis der Standsicherheit für Untertagedeponien im Salzgebirge. Technische Universität Clausthal, Professur für Deponietechnik und Geomechanik. Papierflieger (1997).
[100] U. Hunsche, O. Schulze, Das Kriechverhalten von Steinsalz. Kali und Steinsalz, 11, 238-255 (1994).
[101] K.H. Lux, Gebirgsmechanischer Entwurf und Felderfahrungen im Salzkavernenbau: ein Beitrag zur Entwicklung von Prognosemodellen für den Hohlraumbau im duktilen Salzgebirge. F. Enke Verlag (1984).
[102] R .M. Günther, Erweiterter Dehnungs-Verfestigungs-Ansatz: phänomenologisches Stoffmodell für duktile Salzgesteine zur Beschreibung primären, sekundären und tertiären Kriechens. Ph.D. dissertation, Institut für Geotechnik, Technische Universität Bergakademie Freiberg (2009).
[103] C. Missal, A. Gährken, J. Stahlmann, Vergleich aktueller Stoffgesetze und Vorgehensweisen anhand von Modellberechnungen zum thermo-mechanischen Verhalten und zur Verheilung von Steinsalz. BMBF-Verbundvorhaben, Einzelbericht zum Teilvorhaben (2016).
[104] D .E. Munson, Preliminary deformation mechanism map for salt (with application to WIPP). Sandia Rep. SAND 79-0076 (1979).
[105] D .E. Munson, P.R. Dawson, Constitutive model for the low temperature creep of salt (with application to WIPP). Sandia Rep. SAND 79-1853 (1979).
[106] D .E. Munson, Constitutive model of creep in polycrystalline halite based on workhardening and recovery. International Symposium on Plasticity and its Current Applications. Baltimore, MD (United States) (1993).
[107] N .L. Carter, S.T. Horseman, J.E. Russell, J. Handin, Rheology of rock salt. J. Struct. Geol. 15, 9, 1257-1271 (1993). DOI:
[108] F .D. Hansen, P. E. Senseny, T.W. Pfeifle, T.J. Vogt, Influence of impurities on the creep of salt from the Palo Duro basin. 29th U.S. Symposium on Rock Mechanics (USRMS), June 1988, Minneapolis, Minnesota (1988).
[109] D .E. Munson, Analysis of Multistage and other creep data from domal salts. SANDIA report 98-2276 (1998).
[110] T .W. Pfeifle, T.J. Vogt, G.A. Brekken, Correlation of Chemical, Mineralogic, and Physical Characteristics of Gulf Coast Dome Salt to Deformation and Strength Properties. Solution Mining Research Institute Report no. 94-0004-5 (1995).
[111] A. Pouya, Correlation Between Mechanical Behaviour And Petrological Properties of Rock Salt. In: J.C. Roegiers (ed.), Proceedings of 32nd US symposium on rock mechanics 385-92. Balkema, Rotterdam, ARMA-91-385 (1991).
[112] J. Ślizowski, S. Nagy, S. Burliga, K. Serbin, K. Polański, Laboratory investigations of geotechnical properties of rock salt in Polish salt deposits. In: R.L., Mellegard K., Hansen F. (eds.) Mechanical behavior of salt VIII: Proceedings of the Conference on Mechanical Behavior of Salt, SALTMECH VIII : Rapid City, USA, 26-28 May 2015, CRC Press Taylor & Francis Group, 33-38 (2015).
[113] U. Hunsche, Determination of the dilatancy boundary and damage up to failure for four types of rock salt at different stress geometries. In: Aubertin, M., Hardy Jr., H.R. (Eds.), The Mechanical Behavior of Salt IV; Proc. of the Fourth Conf., (MECASALT IV), Montreal 1996. TTP Trans Tech Publications, Clausthal, 163-174 (1998).
[114] C. Du, C.H. Yang, H.L. Ma, X.L. Shi, J. Chen, Study of creep characteristics of deep rock salt. Rock and Soil Mechanics 33, 8, 2451-2520 (2012).
[115] X.D. Qui, Y. Jiang, Z.L. Yan, Q.C. Zhuang, Creep damage failure of rock salt. Journal of Chongqing University 26, 3,106-109 (2003).
[116] J.W. Hustoft, R.D. Arnold, L.A. Roberts, Effects of sylvite and carnallite content on creep behavior of potash. SMRI Spring Technical Conference 23-24 April 2012, Regina, Saskatchewan, Canada (2012).
[117] L.J. Ma, H.F. Xu, M.Y. Wang, E.B. Li, Numerical study of gas storage stability in bedded rock salt during the complete process of operating pressure runaway. Chinese Journal of Rock Mechanics and Engineering 34, S2, 4108-4115 (2015).
[118] M.M. Tang, Z.Y. Wang, G.S. Ding, Z.N. Ran, Creep property experiment and constitutive relation of salt-mudstone interlayer. Journal of China Coal Society 35, 1, 42-45 (2010).
[119] Z .W. Zhou, J.F. Liu, F. Wu, L. Wang et al., Experimental study on creep properties of salt rock and mudstone from bedded salt rock gas storage. Journal of Sichuan University (Engineering Science Edition) 48, S1, 100-106 (2016).
[120] W .G. Liang, C.H. Yang, Y.S. Zhao, Physico-mechanical properties and limit operation pressure of gas deposit in bedded salt rock. Chinese Journal of Rock Mechanics and Engineering 27, 1, 22-27 (2008).
[121] Y .L. Zhao, Y. Zhang, W. Wan, Mechanical properties of bedded rock salt and creep failure model. Mineral Engineering Research 25, 1, 6-20 (2010).
[122] C.H. Yang, H.J. Mao, X.C. Wang, X.H. Li, J.W. Chen, Study on variation of microstructure and mechanical properties of water-weakening slates. Rock and Soil Mechanics 27, 6, 2090-2098 (2006). DOI:
[123] J.E. Lindqvist, U. Åkesson, K. Malaga, Microstructure and functional properties of rock materials. Mat. Charact. 58, 1183-1188 (2007). DOI:
[124] X. Shi, Y.F. Cheng, S. Jiang, D.S. Cai, T. Zhang, Experimental study of microstructure and rock properties of shale samples. Chinese Journal of Rock Mechanics and Engineering 33, 3439-3445 (2014).
[125] T. Toboła, K. Cyran, M. Rembiś, Petrological and Microhardness Study on Blue Halite from Kłodawa Salt Dome (central Poland). 9th Conference on the Mechanical Behavior of Salt (SaltMech IX), September 12-14, 2018, Hannover, Germany, (2018).
[126] T. Toboła, K. Cyran, M. Rembiś, Microhardness analysis of halite from different salt-bearing formations. Geol. Quart. 63, 4, 771-785 (2019). DOI:
[127] T. Toboła, P. Kukiałka, The Lotsberg Salt formation in Central Alberta (Canada) – petrology, geochemistry and fluid inclusions. Minerals 10, 868 (2020). DOI:
[128] S. Zelek, K. Stadnicka, J. Szklarzewicz, L. Natkaniec-Nowak, T. Toboła, Halite from Kłodawa: the attempt of correlation between lattice defor mation and spectroscopic properties in UV-VIS. Gospodarka Surowcami Mineralnymi PAN 3, 159-172 (2008).
[129] S. Zelek, K. Stadnicka, T. Toboła, L. Natkaniec-Nowak, Lattice deformation of blue halite from Zechstein evaporite basin: Kłodawa Salt Mine, Central Poland. Mineral. Petrol. 108, 619-631 (2014). DOI:
[130] A. Tuğrul, I.H. Zarif, Correlation of mineralogical and textural characteristics with engineering properties of selected granitic rocks from Turkey. Eng. Geol. 51, 4, 303-317 (1999). DOI:
[131] A.A. Momeni, G.R. Khanlari, M. Heidari, A.A. Sepahi, E. Bazvand, New engineering geological weathering classifications for granitoid rocks. Eng. Geol. 185, 43-51 (2015). DOI:
[132] E. Cantisani, C.A. Garzonio, M. Ricci, S. Vettori, Relationships between the petrographical, physical and mechanical properties of some Italian sandstones. Int. J. Rock Mech. Min. Sci. 60, 321-332 (2013). DOI:

Przejdź do artykułu

Autorzy i Afiliacje

Katarzyna Cyran

  1. AGH University of Science and Technology, Faculty of Mining and Geoengineering, Al. Mickiewicza 30, 30-059 Krakow, Poland
Pobierz PDF Pobierz RIS Pobierz Bibtex


The paper presents the results of a study of methane adsorption on coal samples with various degrees of metamorphism, coming from the Polish and Czech parts of the Upper Silesian Coal Basin (USCB). The range of coalification of the samples was from bituminous with vitrinite reflectance Ro equal to about 0.5% to para-anthracite coals with Ro equal to over 2%. The methane adsorption capacity was determined at the temperature 303 K for each of the studied coal seams. Methane adsorption isotherms were approximated using the Langmuir model. The relationship between the Langmuir isotherm parameters (am and PL) and the degree of coalification was presented. It was shown that the degree of coalification of the coal substance affects the adsorption ability of coal with respect to methane and determines the value of the Langmuir isotherm parameters. The study was conducted in order to present the distribution of adsorption capacity of Upper Silesian coals in relation to improving work safety in active mines as well as designing technologies that use coal bed methane (CBM) from balance and off-balance resources.
Przejdź do artykułu


[1] B. Dutka, K. Godyń. Predicting variability of methane pressure with depth of coal seam. Przemysł Chemiczny 97 (8), 1344-1348 (2018). DOI:
[2] C. Gao, D. Liu, Z. Li, Y. Cai, Fluid Performance in Coal Reservoirs: A Comprehensive Review Geofluids, 2021 Article ID 6611075, 33 (2021). DOI:
[3] T .A. Moore. Coalbed methane: A review. International Journal of Coal Geology 101, 36-81 (2012). DOI:
[4], accessed: 01.04.2021
[5] H . Paszcza. Ocena stanu zasobów węgla kamiennego w Polsce z uwzględnieniem parametrów jakościowych i warunków zalegania w aspekcie zapewnienia bezpieczeństwa energetycznego kraju. Zeszyty Naukowe Instytutu Gospodarki Surowcami Mineralnymi i Energii Polskiej Akademii Nauk. 83, 147-162 (2012).
[6] Raport roczny o stanie podstawowych zagrożeń naturalnych i technicznych w górnictwie węgla kamiennego. Praca zbiorowa pod kierunkiem dr. hab. inż. Józefa Kabiesza. Główny Instytut Górnictwa, Katowice 2019 (2018).
[7] R . Kandiyoti, A. Herod, K. Bartle, T. Morgan, Chapter 2 – Solid fuels: Origins and characterization. Solid Fuels and Heavy Hydrocarbon Liquids. Thermal Characterization and Analysis, Second Edition, Elsevier Science (2017).
[8] M. M. Mohanty, B.K. Pal, Sorption behaviour of coal for implication in coal bed methane an overview. International Journal of Mining Science and Technology 27 (2), 307-314 (2017). DOI:
[9] B. Dutka, CO2 and CH4 sorption properties of granular coal briquettes under in situ states. Fuel, 247, 228-236, (2019). DOI:
[10] K. Godyń, B. Dutka, M. Chuchro, M. Młynarczuk, Synergy of Parameters Determining the Optimal Properties of Coal as a Natural Sorbent. Energies 13 (8), 1967 (2020). DOI:
[11] K. Czerw, P. Baran, J. Szczurowski, K. Zarębska, Sorption and Desorption of CO2 and CH4 in Vitrinite-and Inertinite- Rich Polish Low-Rank Coal. Natural Resources Research 30 (3), 1-14 (2020). DOI: s11053-020-09715-2
[12] S. Kędzior, Accumulation of coal-bed methane in the south-west part of the Upper Silesian Coal Basin (southern Poland). International Journal of Coal Geology 80, 20-34 (2009). DOI:
[13] Y . Cheng, H. Jiang, X. Zhang, J. Cui, C. Song, X. Li, Effects of coal rank on physicochemical properties of coal and on methane adsorption. International Journal of Coal Science & Technology 4 (2), 129-146 (2017). DOI:
[14] K. Godyń, B. Dutka, The impact of the degree of coalification on the sorption capacity of coals from the Zofiówka Monocline. Archives of Mining Sciences 63 (3), 727-746 (2018). DOI:
[15] E. Stach, M.-Th. Mackowsky, M. Teichmuller, G.M. Taylor, D. Chandra, R. Teichmuller, Stach’s Textbook of Coal Petrology; Gebruder Borntraeger: Berlin/Stuttgart, Germany (1982).
[16] M. Manecki, M. Muszyński (red.), Przewodnik do petrografii. Kraków, AGH Uczelniane Wydawnictwa Naukowo-Dydaktyczne (2008).
[17] M. Skiba, M. Młynarczuk. Estimation of Coal’s Sorption Parameters Using Artificial Neural Networks. Materials 13 (23), 5422 (2020). DOI:
[18] Y . Gensterblum, A. Merkel, A. Busch, B.M. Krooss, High-pressure CH4 and CO2 sorption isotherms as a function of coal maturity and the influence of moisture. International Journal of Coal Geology 118, 45-57 (2013). DOI:
[19] K. Godyń A. Kožušníková, Microhardness of Coal from Near-Fault Zones in Coal Seams Threatened with Gas- Geodynamic Phenomena, Upper Silesian Coal Basin, Poland. Energies 12 (9), 1756 (2019). DOI: https://doi. org/10.3390/en12091756
[20] C. Laxminarayana, P. Crosdale, Role of coal type and rank on methane sorption characteristics of Bowen Basin, Australia coals. International Journal of Coal Geology 40 (4), 309-325 (1999). DOI: S0166-5162(99) 00005-1
[21] D. Prinz, W. Pyckhout-Hintzen, R. Littke, Development of the meso- and macroporous structure of coals with rank as analyzed with small angle neutron scattering and adsorption experiments. Fuel 83 (4-5), 547-556 (2004). DOI:
[22] J. Dubiński, M. Turek, Szanse i zagrożenia rozwoju górnictwa węgla kamiennego w Polsce (Opportunities and Threats of Coal Mining in Poland). Wiadomości Górnicze 11, 626-633 (2012).
[23] P. Dutta, S. Bhowmik, S. Das, Methane and carbon dioxide sorption on a set of coals from India. International Journal of Coal Geology 85 (3-4), 289-299 (2011). DOI:
[24] W . Gabzdyl, Geologia złóż węgla: Złoża świata. Warszawa: Polska Agencja Ekologiczna (1994).
[25], accessed: 12.12.2020
[26] Z. Dembowski, General Information on the Upper Silesian Basin. Prace Instytutu Geologicznego 61, 9-22 (1972) [in Polish with English abstract]
[27] J. Jureczka, Nowe dane o charakterystyce litostratygraficznej kontaktu serii paralicznej i górnośląskiej serii piaskowcowej karbonu zachodniej części Górnośląskiego Zagłębia Węglowego. Materiały XI Sympozjum Geologia Formacji Węglonośnych Polski. Wyd. AGH, Kraków (1988).
[28] A . Kotas, Z. Buła, J. Jureczka, Problematyka podziału litostratygraficznego Górnośląskiej serii piaskowcowej karbonu GZW w świetle zasad kodeksu stratygraficznego. In: XI Sympozjum Geologia formacji węglonośnych Polski. AGH Kraków, Poland, 55-61. 30 (1988).
[29] M. Sivek, M. Dopita, M. Krůl, M. Čáslavský, J. Jirásek, Atlas of Chemical-Technological Properties of Coals in the Czech Part of the Upper Silesian Basin. 31 pp. Vysoká Škola Báňská – Technical University of Ostrava, Ostrava (2003).
[30] L. Hýlová, J. Jureczka, J. Jirásek, M. Sivek, J. Hotárková, The Petřkovice Member (Ostrava Formation, Mississippian) of the Upper Silesian Basin (Czech Republic and Poland). Int. J. Coal Geol. 106, 11-24 (2013). DOI:
[31] J. Jirásek, S. Opluštil, M. Sivek, M.D. Schmitz, H.A. Abels, Astronomical forcing of Carboniferous paralic sedimentary cycles in the Upper Silesian Basin, Czech Republic (Serpukhovian, latest Mississippian): New radiometric ages afford an astronomical age model for European biozonations and substages. Earth-Science Reviews 177, 715-741 (2018). DOI:
[32] Z . Klika, J. Serenčíšová, A. Kožušníková, I. Kolomazník, S. Študentová, J. Vontorová, Multivariate statistical assessment of coal properties. Fuel Process. Technol. 128, 119-127 (2014). DOI:
[33] UN ECE. International Classification of In-Seam Coals; ECE UN: Geneva, Switzerland; UN: New York, NY, USA, (1995).
[34] S. Hao, W. Chu, Q. Jiang, X. Yu, Methane adsorption characteristics on coal surface above critical temperature through Dubinin – Astakhov model and Langmuir model. Colloids and Surfaces A: Physicochemical and Engineering Aspects 444, 104-113 (2014). DOI:
[35] K . Probierz, M. Marcisz, A. Sobolewski, Rozpoznanie warunków geologicznych występowania węgla koksowego w rejonie Jastrzębia dla potrzeb projektu „Inteligentna Koksownia”. Biuletyn PIG 452, 245-256 (2012).
[36] D. Guo, X. Guo, The influence factors for gas adsorption with different ranks of coals. Adsorption Science & Technology 36 (3-4), 904-918 (2017). DOI:
Przejdź do artykułu

Autorzy i Afiliacje

Barbara Dutka
Katarzyna Godyń

  1. Strata Mechanics Research Institute of the Polish Academy of Sciences, 27 Reymonta Str.,30-059 Krakow, Poland
Pobierz PDF Pobierz RIS Pobierz Bibtex


As a preliminary point, four longwalls, where inertisation of goafs using nitrogen was applied, have been characterised. Next, the issue concerning the unreliable Graham’s ratio values, which occur in certain ranges of its denominator value, were discussed. The reliability criterion of this indicator was also quoted. Afterwards, a basic statistical sample consisting of the results of chromatographic analyses of air samples taken from longwalls areas, where nitrogen inertisation was not applied and were classified by Graham’s ratio as samples safe from endogenous fire hazard was described. Then, the results of comparative analyses of the base sample with the concentrations of gases contained in air samples taken from the areas of the previously described four longwalls, which according to Graham’s ratio, were also safe from the endogenous fire were presented. Comparative analyses were performed before and after applying Graham’s ratio reliability criterion.
Przejdź do artykułu


[1] S. Bajic, S. Muller, M. Gido, Oxygen deficiency in Graham’s Ratio evaluation. Proceedings of Coal Operators’ Conference, University of Wollongong, 314-320 (2020).
[2] D. Brady, The influence analytical techniques and uncertainties in measurement have on the assessment of underground coal mine atmospheres. Proceedings of the Queensland Mining Industry Health and Safety Conference, 1-11 (2007).
[3] D. Brady, Problems with Determining Oxygen Deficiencies in Ratios Used for Assessing Spontaneous Combustion Activity. Aziz Coal Operators’ Conference, 209-216 (2008).
[4] D. Cliff, The ability of current gas monitoring techniques to adequately detect spontaneous combustion. Brisbane Coal Conference, 26-28 (2005).
[5] J. Cygankiewicz, Ocena rozwoju ognisk samozagrzewania na podstawie precyzyjnej analizy chemicznej prób powietrza kopalnianego. Prace Naukowe Głównego Instytutu Górnictwa 14, 505-513 (1996).
[6] A . Luszniewicz, T. Słaby, Statystyka z pakietem komputerowym STATISTICA PL. Teoria i zastosowania. Wydawnictwo C.H. Beck (2008).
[7] P . Mackenzie-Wood, J. Strang, Fire gases and their interpretation. The Mining Engineer (1990).
[8] D.W. Mitchell, Mine Fires: Prevention Detection and Fighting. Third Edition, 82-83 (1996).
[9] R . Moraru, G. Babut, Oxygen deficiencies interpretation for use in ratios assessing spontaneous combustion activity. Revista Minerol 3 (2010).
[10] S . Muller, L. Ryan, J. Hollyer, S. Bajic, Review of oxygen deficiency requirements for Graham’s ratio. Proceedings of the 17th Coal Operators’ Conference, University of Wollongong, 382-390 (2017).
[11] S .K. Ray, R.P. Singh, N. Sahay, N.K. Varma, Assessing the status of sealed fire in underground coal mines. Journal of Scientific & Industrial Research 63, 579-591 (2003).
[12] Rozporządzenie Ministra Energii z dnia 23 listopada 2016 r. w sprawie szczegółowych wymagań dotyczących prowadzenia ruchu podziemnych zakładów górniczych.
[13] S . Słowik, L. Świerczek, Ujemne i zawyżone wartości wskaźnika Grahama. Przegląd Górniczy 12, 98-105 (2014).
[14] S . Słowik, L. Świerczek, Przedział wiarygodności wskaźnika Grahama. Przegląd Górniczy 12, 49-61 (2015).
[15] N . Szlązak, K. Piergies, Inertyzacja zrobów ścian zawałowych. Systemy wspomagania w inżynierii produkcji. Górnictwo – perspektywy i zagrożenia 7 (2018).
[16] S . Trenczek, Ocena stanu zagrożenia pożarem endogenicznym, na podstawie temperatury zrobów wyznaczonej metodą gazów istotnych. Zeszyty Naukowe Politechniki Śląskiej, seria Górnictwo 258, 363-375 (2003).
[17] S. Trenczek, Ocena zagrożenia pożarami endogenicznymi pokładów węgla kamiennego i sposoby jego zapobiegania. Wydawnictwo Politechniki Śląskiej (2010).
Przejdź do artykułu

Autorzy i Afiliacje

Lucjan Świerczek

  1. Central Mining Institute, Department of Mining Aerology, 1 Gwarków Sq., 40-166 Katowice, Poland
Pobierz PDF Pobierz RIS Pobierz Bibtex


Large deformation in roadways is an inevitable problem faced by many coal mines, and bolt installation is widely adopted to keep roadway stability. To provide a theoretical basis for bolt supporting scheme design in order to eliminate hazards associated with roadway failure, the interaction principle between bolts and the bolted strata should be studied thoroughly. This research attempts to investigate the above principle through theoretical analysis through a group of selected statistics from fifteen different coal mines. At the same time, the thick board support method was proposed and applied for controlling the ribs deformation in a particular coal mine. It is concluded that the interaction of the rock-bolt entity is subjected to the fluctuation balance law. When deformation increases, the bolted structure experiences periodic equilibrium variation. Both the supporting force needed to stabilise the surrounding rocks and the supporting capability of bolted strata show a trend of decrease in this process. The interaction principle of surrounding rocks and bolts is in essence the mechanical phenomenon caused by their mutual load transformation, and the load-carrying capacity varies with the bolted structure’s deformation, which is subjected to the following law: elastic roadway>plastic roadway> fractured roadway>broken roadway. The designed bolted thickness of the ribs should be more than 1/5 of roadway height to make full use of the self-stability of surrounding rocks. Finite Difference Method simulation and on-site monitoring data showed that the roof subsidence and ribs convergence of 2201 roadway in Shuguang coal mine was reduced by 83.7% and 88.6% respectively after utilising the proposed support method, indicating that the thick-board method was effective. Results of this research can lay a foundation for support design in large deformation roadways.
Przejdź do artykułu


[1] P.K. Mandal, A.J. Das, N. Kumar, R. Bhattacharjee, S. Tewari, A. Kushwaha, Assessment of roof convergence during driving roadways in underground coal mines by continuous miner. Int. J. Rock Mech. Min. Sci. 108, 169-178 (2018).
[2] C .C. Li, G. Kristjansson, A.H. Høien, Critical embedment length and bond strength of fully encapsulated rebar rockbolts. Tunn. Undergr. Space Technol. 59, 16-23 (2016).
[3] C .G. Zhang, I. Canbulat, F. Tahmasebinia, B. Hebblewhite, Assessment of energy release mechanisms contributing to coal burst. Int. J. Min. Sci. Technol. 27 (1), 43-47 (2017).
[4] Q. Deng, Y Wang, M. Liu, J. Wei, Statistic analysis and enlightenment on coal mine accident of China from 2001~2013 periods. Coal Technol. 9, 73-75 (2014). (in Chinese).
[5] F.D. Gearhart, M.K. Mohamed, Vertical load capacities of roof truss cross members. Int. J. Min. Sci. Technol. 26 (3), 517-520 (2016).
[6] C .C. Li, G. Stjern, A. Myrvang, A review on the performance of conventional and energy-absorbing rockbolts. J. Rock Mech. Geotech. Eng. 6 (4), 315-327 (2014).
[7] S. Ding, H. Jing, K. Chen, G. Xu, B. Meng, Stress evolution and support mechanism of a bolt anchored in a rock mass with a weak interlayer. Int. J. Min. Sci. Technol. 27 (3), 573-580 (2017).
[8] H. Zhang, X. Miao, G. Zhang, Y. Wu, Y. Chen, Non-destructive testing and pre-warning analysis on the quality of bolt support in deep roadways of mining districts. Int. J. Min. Sci. Technol. 27 (6), 989-998 (2017).
[9] R. Šňupárek, P. Konečný, Stability of roadways in coalmines alias rock mechanics in practice. J. Rock Mech. Geotech. Eng. 2, 281-288 (2010).
[10] K. Yang, G. Xie, G. Tan, Experimental investigation on behaviors of bolt-supported rock strata surrounding an entry in large dip coal seam. J. Rock Mech. Geotech. Eng. 3 (1), 445-449 (2011).
[11] C . Zhou, Y. Chen, Q. Jiang, W. Lu, A generalized multi-field coupling approach and its application to stability and deformation control of a high slope. J. Rock Mech. Geotech. Eng. 3 (3), 193-206 (2011).
[12] H. Kang, Y. Wu, F. Gao, Deformation characteristics and reinforcement technology for entry subjected to mininginduced stresses. J. Rock Mech. Geotech. Eng. 3 (3), 207-219 (2011).
[13] Q. Chang, H. Zhou, Z. Xie, S. Shen, Anchoring mechanism and application of hydraulic expansion bolts used in soft rock roadway floor heave control. Int. J. Min. Sci. Technol. 23 (3), 323-328 (2013).
[14] G. Armand, A. Noiret, J. Zghondi, D. M. Seyedi, Short- and long-term behaviors of drifts in the Callovo-Oxfordian clay stone at the Meuse/Haute-Marne Underground Research Laboratory. J. Rock Mech. Geotech. Eng. 5 (3), 221-230 (2013).
[15] I. Khalymendyk, A. Brui, A. Baryshnikov, Usage of Cable Bolts for Gateroad Maintenance in Soft Rocks. J. Sustainable Min. 13 (3), 1-6 (2014).
[16] C .C. Li, Principles of rockbolting design. J. Rock Mech. Geotech. Eng. 9 (3), 396-414 (2017).
[17] R. Frith, G. Reed, M. McKinnon, Fundamental principles of an effective reinforcing roof bolting strategy in horizontally layered roof strata and areas of potential improvement. Int. J. Min. Sci. Technol. 28 (1), 67-77 (2018).
[18] T. Wu, C. Chen, H. Jun, R. Ting, Effect of bolt rib spacing on load transfer mechanism. Int. J. Min. Sci. Technol. 27 (3), 431-434 (2017).
[19] Y. Heritage, Mechanics of rib deformation Observations and monitoring in Australian coal mines. Int. J. Min. Sci. Technol. 29 (1), 119-129 (2019).
[20] G. Wu, W. Yu, J. Zuo, S. Du, Experimental and theoretical investigation on mechanisms performance of the rockcoal- bolt (RCB) composite system. Int. J. Min. Sci. Technol. 30 (6), 759-768 (2020).
[21] A. Sjölander, R. Hellgren, R. Malm, A. Ansell, Verification of failure mechanisms and design philosophy for a bolt-anchored and fiber-reinforced shotcrete lining. Eng Fail Anal. 116, 104741 (2020).
[22] H. Kang, J. Yang, X Meng, Tests and analysis of mechanical behaviors of rock bolt components for China’s coal mine roadways. J. Rock Mech. Geotech. Eng. 7 (1), 14-26 (2015).
[23] S. Sinha, Y.P. Chugh, Validation of critical strain technique for assessing stability of coal mine intersections and its potential for development of roof control plans. J. Rock Mech. Geotech. Eng. 10 (2), 380-389 (2018).
[24] R. Singh, S. Ram, A.K. Singh, A. Kumar, R. Kumar, A.K. Singh, Rock Mechanics Considerations for Roof Bolt- Based Breaker Line Design. Procedia Eng. 191, 551-559 (2017).
[25] P. Waclawik, R. Snuparek, R. Kukutsch, Rock Bolting at the Room and Pillar Method at Great Depths. Procedia Eng. 191, 575-582 (2017).
[26] P. Singh, A.J.S. (Sam) Spearing, K.V. Jessu, P.C.P. da S. Ribeiro, Establishing the need to model the actual state of stress along rock bolts. Int. J. Min. Sci. Technol. 30 (3), 279-286 (2020).
[27] P.C. Pinazzi, A.J.S. (Sam) Spearing, K.V. Jessu, P. Singh, R. Hawker, Mechanical performance of rock bolts under combined load conditions. Int. J. Min. Sci. Technol. 30 (2), 167-177 (2020).
[28] K. Mohamed, G. Rashed, Z.R. Guzina, Loading characteristics of mechanical rib bolts determined through testing and numerical modeling. Int. J. Min. Sci. Technol. 30 (1), 17-24 (2020).
[29] R. Abousleiman, G. Walton, S. Sinha, Understanding roof deformation mechanics and parametric sensitivities of coal mine entries using the discrete element method. Int. J. Min. Sci. Technol. 30 (1), 123-129 (2020).
[30] R. Das, T. Nath Singh, Effect of rock bolt support mechanism on tunnel deformation in jointed rockmass: A numerical approach. Undergr. Space (2020).
[31] W. Masny, Powered support in dynamic load conditions – numerical analysis. Arch. Min. Sci. 65 (3), 453-468 (2020).
[32] W. Li, N. Yang, B. Yang, H. Ma, T. Li, Q. Wang, G. Wang, Y. Du, M. Zhao, An improved numerical simulation approach for arch-bolt supported tunnels with large deformation. Tunn. Undergr. Space Technol. 77, 1-12 (2018).
[33] H. Lin, Z. Xiong, T. Liu, R. Cao, P. Cao, Numerical simulations of the effect of bolt inclination on the shear strength of rock joints. Int. J. Rock Mech. Min. Sci. 66, 49-56 (2014).
[34] S. Luo, W. Liang, Optimization of roadway support schemes with likelihood-based MABAC method. Appl. Soft Comput. 80, 80-89 (2019).
[35] L. Zhang, J. Liu, X. Cao, F. Yan, Mechanism and application of concrete-filled steel tubular support in deep and high stress roadway. Build. Mater. 186, 233-246 (2018).
[36] R. Cao, P. Cao, H. Lin, Support technology of deep roadway under high stress and its application. Int. J. Min. Sci. Technol. 26, 787-793 (2016).
[37] Q. Meng, L. Han, Y. Chen, J. Fan, S. Wen, L. Yu, H. Li, Influence of dynamic pressure on deep underground soft rock roadway support and its application. Int. J. Min. Sci. Technol. 26, 903-912 (2016).
[38] W. Huang, Q. Yuan, Y. Tan, J. Wang, G. Liu, G. Qu, C. Li, An innovative support technology employing a concretefilled steel tubular structure for a 1000-m-deep roadway in a high in situ stress field. Tunn. Undergr. Space Technol. 73, 26-36 (2018).
[39] G. Wu, S. Jia, W. Chen, J. Yuan, H. Yu, W. Zhao, An anchorage experimental study on supporting a roadway in steeply inclined geological formations. Tunn. Undergr. Space Technol. 82, 125-134 (2018).
[40] S. Van Duin, L. Meers, P. Donnelly, I. Oxley, Automated bolting and meshing on a continuous miner for roadway development. Int. J. Min. Sci. Technol. 23 (1), 55-61 (2013).
[41] M. Van Dyke, T. Klemetti, J. Wickline, Geologic data collection and assessment techniques in coal mining for ground control. Int. J. Min. Sci. Technol. 30 (1), 131-139 (2020).
[42] T.M. Klemetti, M. Van Dyke, I.B. Tulu, Deep cover bleeder entry performance and support loading: A case study. Int. J. Min. Sci. Technol. 28 (1), 85-93 (2018).
[43] J. Booth, A.M. Marshall, R. Stace, Probabilistic analysis of a coal mine roadway including correlation control between model input parameters. Comput. Geotech. 74, 151-162 (2016).
[44] P. Małkowski, The impact of the physical model selection and rock mass stratification on the results of numerical calculations of the state of rock mass deformation around the roadways. Tunn. Undergr. Space Technol. 50, 365-375 (2015).
[45] F. Ma, H. Yang, M. Zhan, Plastic deformation behaviors and their application in power spinning process of conical parts with transverse inner rib. J. Mater. Process. Technol. 210 (1), 180-189 (2010).
[46] L. Thenevin, B. Martín, F.H. Hassen, J. Schleifer, Z. Lubosik, A. Wrana, Laboratory pull-out tests on fully grouted rock bolts and cable bolts: Results and lessons learned. J. Rock Mech. Geotech. Eng. 9, 843-855 (2017).
[47] I. Canbulat, J. Hoelle, J. Emery, Risk management in open cut coal mines. Int. J. Min. Sci. Technol. 23 (3), 369-374 (2013).
[48] F.M. Mohee, A.A. Mayah, Effect of barrel, wedge material and thickness on composite plate anchor performance through analytical, finite element, experimental and 3D prototype investigations. Eng. Struct. 175, 138-154 (2018).
[49] V . Saberi, M. Gerami, A. Kheyoddin, Comparison of bolted end plate and T-stub connection sensitivity to component thickness. J. Constr. Steel. Res. 98, 134-145 (2014).
[50] S.S. Yang, The theory of thick anchor plate for anchoring and supporting coal mine roadways. Proceedings of 2010 Academic Annual Conference of Mining Professional Committee of China Coal Society 5 (2010). (in Chinese).
[51] W. Witkowski, M. Rucka, J. Chróścielewski, K. Wilde, On some properties of 2D spectral finite elements in problems of wave propagation. Finite Elem. Anal. Des. 55, 31-41(2012).
[52] S. Burzyński, J. Chróścielewski, K. Daszkiewicz, W. Witkowski, Geometrically nonlinear FEM analysis of FGM shells based on neutral physical surface approach in 6-parameter shell theory. Compos. Part B-Eng. (2016).
[53] E.H. Twizell, A.G. Bratsos, J.C. Newby, A finite-difference method for solving the cubic Schrödinger equation. Math. Comput. Simul. 43 (1), 67-75 (1997).
[54] G. Papakaliatakis, T.E. Simos, A finite difference method for the numerical solution of fourth-order differential equations with engineering applications. Comput. Struct. 65 (4), 491-495 (1997).
[55] R.D. Richtmyer, K.W. Morton, Difference Methods for Initial-Value Problems. (2nd ed.). Interscience Pub., New York (1967).
[56] S. Bock, New open-source ANSYS-SolidWorks-FLAC3D geometry conversion programs. J. Sustainable Min. 14 (3), 124-132 (2015).
[57] S.S. Yang, M.G. Qian, L. X. Kang, X.R. Jia, The theory of fluctuant equilibrium of interaction between surrounding rock and support of roadway. J. Taiyuan University of Technology 32 (4), 339-343 (2001). (in Chinese).
[58] M. Van Dyke, W.H. Su, J. Wickline, Evaluation of seismic potential in a longwall mine with massive sandstone roof under deep overburden. Int. J. Min. Sci. Technol. 28 (1), 115-119 (2018).
[59] H. Kang, L. Wu, F. Gao, H. Lv, J. Li, Field study on the load transfer mechanics associated with longwall coal retreat mining. Int. J. Rock Mech. Min. Sci. 124, 104141 (2019).
[60] Y. Wu, H. Kang, J. Wu, F. Gao, Deformation and support of roadways subjected to abnormal stresses. Procedia Eng. 26, 665-674 (2011).
[61] N . Bahrani, J. Hadjigeorgiou, Explicit reinforcement models for fully-grouted rebar rock bolts. J. Rock Mech. Geotech. Eng. 9, 267-280 (2017).
[62] Z. Niedbalski, T. Majcherczyk, Indicative assessment of design efficiency of mining roadways. J. Sustainable Min. 17, 131-138 (2018).
[63] R. Singh, P.K. Mandal, A.K. Singh, T.N. Singh, Cable-bolting-based semi-mechanised depillaring of a thick coal seam. Int. J. Rock Mech. Min. Sci. 18, 245-257 (2001).
[64] K. Rakesh, M.A. Kumar, S. Arun Kumar, S. Amit Kumar, R. Sahendra, S. Rajendra, Depillaring of total thickness of a thick coal seam in single lift using cable bolts: A case study. Int. J. Min. Sci. Technol. 26, 223-233 (2016).
[65] Y. Cai, T. Esaki, Y. Jiang, A rock bolt and rock mass interaction model. Int. J. Rock Mech. Min. Sci. 41, 1055-1067 (2004).
[66] M. Moosavi, R. Grayeli, A model for cable bolt-rock mass interaction: Integration with discontinuous deformation analysis (DDA) algorithm. Int. J. Rock Mech. Min. Sci. 43, 661-670 (2006).
[67] J.P. Zuo, J.H. Wen, Y.D. Li, Y. J. Sun, J.T. Wang, Y.Q. Jiang, L. Liu, Investigation on the interaction mechanism and failure behavior between bolt and rock-like mass. Tunn. Undergr. Space Technol. 93, 103070 (2019).
[68] R. Kumar, P.K. Mandal, A. Narayan, A.J. Das, Evaluation of load transfer mechanism under axial loads in a novel coupler of dual height rock bolts. Int. J. Min. Sci. Technol. (2021).
[69] N . Che, H. Wang, M. Jiang, DEM investigation of rock/bolt mechanical behaviour in pull-out tests. Particuology, (2020).
[70] L. Cui, J.J. Zheng, Q. Sheng, Y. Pan, A simplified procedure for the interaction between fully-grouted bolts and rock mass for circular tunnels. Comput. Geotech. 106, 177-192 (2019).
[71] X. Wu, Y. Jiang, Z. Guan, G. Wang, Estimating the support effect of energy-absorbing rock bolts based on the mechanical work transfer ability. Int. J. Rock Mech. Min. Sci. 103, 168-178 (2018).
[72] Y. Cai, Y. Jiang, I. Djamaluddin, T. Iura, T. Esaki, An analytical model considering interaction behavior of grouted rock bolts for convergence-confinement method in tunneling design. Int. J. Rock Mech. Min. Sci. 76, 112-126 (2015).

Przejdź do artykułu

Autorzy i Afiliacje

Xun Yuan
Shuangsuo Yang

  1. Sichuan University – The Hong Kong Polytechnic University, Institute for Disaster Managementand Reconstruction, 610207 Chengdu, China
  2. Taiyuan University of Technology, College of Mining Engineering, 030024 Taiyuan, China
Pobierz PDF Pobierz RIS Pobierz Bibtex


Optimum truck numbers of an enterprise can be found by dividing the period of time passed between a departing truck after loading, the arrival at the dumping location, the arrival at the point of loading again and the average loading time parameters of a truck. The average loading time of the truck is directly associated with the bucket fill factor and cycle time of the excavator. While the bucket fill factor depends on the mechanical strength and the discontinuity characteristics of the rock, the cycle time is related to bucket volume, the strength and the discontinuity characteristics of the rock. In this study, two relations predicting the average cycle time of the bucket fill factor for both hydraulic and electric excavators is done by seven excavators with different bucket volumes, and mass characteristics of eight different rocks from a coal open pit mine. According to the above, the optimum truck number was developed.
Przejdź do artykułu


[1] S. Alarie, M. Gamache, Overview of Solution Strategies Used in Truck Dispatching Systems for Open Pit Mines. International Journal of Surface Mining Reclamation and Environment 16, 59-76 (2002).
[2] M. Beaulieu, M. Gamache, An Enumeration Algorithm for Solving the Fleet Management Problem in Underground Mines. Computers and Operations Research 33 (6), 1606-1624 (2006).
[3] A.C.M.M. Campelo, T. Marin, The Impact of Payload Truck Factor Use in Mine Performance Reports for an Open Pit Copper Mine in Brazil. REM – International Engineering Journal 71 (3), (2018). DOI: https://doi. org/10.1590/0370-44672017710189
[4] Y. Chang, Ren and S. Wang, Modelling and Optimizing an Open-Pit Truck Scheduling Problem. Discrete Dynamics in Nature and Society (745378), 8 (2015). DOI:
[5] P. Chaowasakoo et al., Digitalization of Mine Operations Scenarios to Benefit in Real-Time Truck Dispatching. International Journal of Mining Science and Technology 27 (2), 229-236 (2017).
[6] Y . Choi et al., Multi-Criteria Evaluation and Least-Cost Path Analysis for Optimal Haulage Routing of Dump Trucks in Large Scale Open Pit Mines. International Journal of Geographical Information Science 23 (12), 1541- 1567 (2009).
[7] S.R. Dindarloo, M. Osanloo, S. Frimpong, A Stochastic Simulation Framework for Truck and Shovel Selection and Sizing in Open Pit Mines. Journal of the Southern African Institute of Mining and Metallurgy 115 (3), 209-219 (2015).
[8] S.G. Ercelebi, A. Bascetin, O ptimization of Shovel-Truck System for Surface Mining. Journal of The Southern African Institute of Mining and Metallurgy 109, 433-439 (2009).
[9] Y . Li, N.L. Hu ,G.Q. Li, Open-Pit Hauling Dispatching Optimization Based on Improved Pso Algorithm. China’s Mining Magazine 22 (4), 98-105 (2013).
[10] G . Liu, S. Chai, Optimizing Open-Pit Truck Route Based on Minimization of Time-Varying Transport Energy Consumption. Mathematical Problems in Engineering (687108) (2019). DOI:
[11] P.R. Michaud, J.Y. Blanchet, Establishing a Quantitative Relation Between Post Blast Fragmentation and Mine Productivity a Case Study. Proceedings of 5th International Symposium on Rock Fragmentation by Blasting 386- 396 (1996).
[12] A. Moradi Afrapoli, H. Askari-Nasab, Mining Fleet Management Systems: A Review of Models and Algorithms. International Journal of Mining Reclamation and Environmental 1-19 (2017).
[13] M. Munirathinam, J.C. Yingling, A Review of Computer-Based Truck Dispatching Strategies for Surface Mining Operations. International Journal of Surface Mining Reclamation and Environmental 8, 1-15 (1994).
[14] S.P. Singh, T. Yalcin, Effects of Muck Size Distribution on Scooping Operations. Proceedings of 28th Annual Conference on Explosives and Blasting Techniques 315-325 (2002).
[15] M. Sarı, P.J.A. Lever, Effect of Blasted Rock Particle Size on Excavation Machine Loading Performance. 20th International Mining Congress and Exhibition of Turkey. ISBN 978-9944-89-288-9 (2007).
[16] R .F. Subtil, D.M. Silva, J.C. Alves, 35th Apcom Symposium/ Wollongong, Nsw, 24-30 September, 765-777 (2011).
[17] L . Zhang, X. Xia, An Integer Programming Approach for Truck-Shovel Dispatching Problem in Open-Pit Mines. Energy Procedia 75, 1779-1784 (2015).
Przejdź do artykułu

Autorzy i Afiliacje

Abdurrahman Tosun

  1. Dokuz Eylul University, Bergama, 35062, Izmir, Turkey
Pobierz PDF Pobierz RIS Pobierz Bibtex


The primary objective of the case study is to improve monitoring, controlling, planning and managing the extraction processes in surface lignite mining. Under the North Bohemian Lignite Basin (also Most Basin) conditions and the Sokolov Basin, wheeled excavators are deployed as the main technology for extracting coal and overlying rock. Their real-time spatial position can be tracked based on data from GNSS technology, inclinometers, and incremental rotary encoders. The measured data is sent to a remote server and stored in the database. It also serves to calculate volumes of extracted masses. Volume calculation, space position visualisation, and wheel boom movements are performed in KVASoftware. It is a program designed for modelling and designing quarries. Knowing the position of the wheel against the digital terrain (quarry), the model is essential for the implementation of many risk-elimination applications, namely with respect to the geological conditions, occupational safety, observance of the profile grade line, the area of extraction, qualitative parameters of the raw material, etc. The mathematical model of backfilling extracted materials is also an integral part of the above-mentioned system.
Przejdź do artykułu


[1] J. Benndorf, Mike W.N. Buxton, Sensor-based real-time resource model reconciliation for improved mine production control – a conceptual framework. Mining Technology 125, 1, 54-64 (2016). DOI:
[2] GeoTel s.r.o., KVA Software, Z jišťování polohy kolesa rýpadla K 800/103/N1 pomocí GP S [GP S – A ided D etermination of the Position of the Bucket Wheel of the K800 Excavator"
[3] Team of authors, Hornická ročenka 2017 [Mining yearbook 2017]: Ostrava, Montanex. ISBN 978-80-7225-454-5, (2018), (in Czech).
[4] D. Sladková, R. Kapica, M. Vrubel, M. Michalusová, Výpočty objemů odtěžených hmot v reálném čase [Calculations of volumes of excavated masses in real-time]. Z pravodaj hnědé uhlí. Most: V ýzkumný ústav pro hnědé uhlí a.s. 2, 10-15 (2012), ISSN 1213-1660, (in Czech).
[5] D. Vrublová, R. Kapica, B . Gibesová, J. Mudruňka, A . Struś, Application of GNSS technology in surface mining. Geodesy and Cartography 42, 4, 122-128 (2016). ISSN: 20296991, DOI:
[6] D. Vrublová, R. Kapica, M. Vrubel, E . Jiránková, Přesnost určování prostorové polohy kolesa rýpadel [Accuracy of the spatial position determination of excavator wheels]. Z pravodaj hnědé uhlí. Most: V ýzkumný ústav pro hnědé uhlí a. s. 3, 10-15 (2015), ISSN 1213-1660, (in Czech).
[7] J. Benndorf, Making Use of Online Production Data: Sequential Updating of Mineral Resource Models. Mathematical Geosciences 47 (5), 547-563 (2015). DOI:
[8] M. Vrubel, D. Sládková, M. Talácko, New possibilities of GPS technology in mine surveying. In Proceedings of the 13th International Congress of ISM, Budapest, ISBN 978-963-9038-18-9 (2007).
[9] D. Vrublová, M. Vrubel, I. Maňas, L. Nábělková, Surveying system for bucket wheel excavators and spreaders tracking as a contribution to automation of mining process at Severočeské doly a.s.. In the Proceedings of the International Conference of Geodesy and Mining Surveying 2018: XXV. SDMG conference, 24-26. October 2018, Pilsen. VSB – Technical University of Ostrava, (2018), (in Czech).
[10] J.W. Van Der Merwe, D.C. Andersen, Applications and benefits of 3D laser scanning for the mining industry. Journal of the Southern African Institute of Mining and Metallurgy 113 (3), 213-219 (2013). ISSN: 2225 6253.
[11] Nebojša B. Gnjatović, Srđan M. Bošnjak, Ivan Lj. Milenović, Aleksandar Z. Stefanović, Bucket wheel excavators: Dynamic response as a criterion for validation of the total number of buckets. Engineering Structures 225, 111313 (2020). ISSN 0141-0296, DOI:
[12] D. Sladková, R. Kapica, M. Vrubel, Global navigation satellite system (GNSS) technology for automation of surface mining. International Journal of Mining Reclamation and Environment 25 (3), 284-294, ISSN: 17480930, (2011). DOI:
[13] I. Maňas, Princip generování ploch a výpočtů objemů v Báňském modelu [The principle of generating surfaces and calculating volumes in the Mining Model]. Technická zpráva k programu [Technical report to the program], (2010). (in Czech).
[14] L. Horák, Návrh klasifikace tektonických zlomů z pohledu jejich rizikovosti pro postupy kolesových velkorýpadel [Draft classification of tectonic faults in view of their risk level for the process of large bucket wheel excavators], posudek [assessment]. GeoTec, (2009). (in Czech).
[15] R. Kapica, D. Vrublová, M. Vrubel, The system of tracking the position of the bucket excavator’s wheel for prevention of risk situations. Acta Geodyn. Geomater. 15, 3 (191), 277-287, (2018). DOI: AGG.2018.0020
[16] E. Jiránková, Utilisation of surface subsidence measurements in assessing failures of rigid strata overlying extracted coal seams. Int. J. Rock Mech. Min. Sci. 53, 111-119, (2012). DOI:
[17] L. Al-Shrouf, N. Szczepanski, D. Söffker, Online feature-based multisensor object detection system for bucket-wheel excavators. Int J Adv Manuf Technol 82, 1213-1226 (2016). DOI:
[18] J. Polák, K. Bailotti, J. Pavliska, L. Hrabovský, Dopravní a manipulační zařízení II [Transport and handling equipment]. Ostrava, VSB-Technical university of Ostrava, (2003). ISBN 80-248-0493-X. (in Czech).
[19] Y. Yuan, Y., Lv, L., Wang, S. et al., Multidisciplinary co-design optimization of structural and control parameters for bucket wheel reclaimer. Front. Mech. Eng. 15, 406-416 (2020). DOI:
Przejdź do artykułu

Autorzy i Afiliacje

Dana Vrublová
Roman Kapica
Stanislav Smelik
Markéta Smeliková

  1. VŠB – Technical University of Ostrava , Faculty of Mining and Geology, Institute of Combined Studies in Most, Dělnická 21, Most, Czech Republic
  2. VŠB – Technical University of Ostrava, Faculty of Mining and Geology, Department of Geodesy and Mine Surveying, 17. listopadu 15, Ostrava – Poruba, 708 00, Czech Republic
  3. Geodetic Office, Baška 111, 739 01 Baška, Czech Republic
Pobierz PDF Pobierz RIS Pobierz Bibtex


Low-frequency mechanical vibrations can trigger disasters such as coal-gas outbursts. An in-house “vibration-triaxial stress-seepage” experimental apparatus was used to measure the gas flow rate of rock specimens with varying vibrational frequency, gas pressure, and confining pressure. The results of these tests were then used to derive expressions that describe how the permeability of gas-containing coal rocks is related to these aforementioned factors. In addition, sensitivity coefficients were defined to characterise the magnitude of the permeability response to each permeability-affecting factor (i.e., vibrational frequency and gas pressure). The following insights were gained, regarding the effects of vibrational frequency on the permeability of gas-containing coal rocks: (1) If gas pressure and confining pressure are fixed, the permeability of gas-containing coal rocks rapidly increases, before gradually decreasing, with increasing vibrational frequency. Thus, the permeability of the gas-containing coal rock is always larger with vibrations than without. (2) If vibrational pressure and confining pressure are fixed, the relationship between the permeability of gas-containing coal rocks and gas pressure is consistent with the “Klinkenberg effect,” i.e., the permeability initially decreases, and then increases, with increasing gas pressure. (3) The change in permeability induced by each unit change in gas pressure is proportional to the gas pressure sensitivity coefficient. (4) The change in permeability induced by each unit change in vibrational frequency is proportional to the vibrational frequency sensitivity coefficient.
Przejdź do artykułu


[1] L. Zhou, L. Yuan, R. Thomas, A, Iannacchione, Determination of Velocity Correction Factors for Real-Time Air Velocity Monitoring in Underground Mines. Int. J. Coal Sci. Technol. 4 (4), 322-332 (2017). DOI: https://doi. org/10.1007/s40789-017-0184-z
[2] M. Ajamzadeh, V. Sarfarazi, H. Dehghani, Evaluation of Plow System Performance in Long-Wall Mining Method Using Particle Flow Code. Int. J. Coal Sci. Technol. 6 (4), 518-535 (2019). DOI: 019-00266-3
[3] Y. Lei, Y. Zeng, Z. Ning, Transient Flow Model of Multiply Fractured Horizontal Wells in Shale Gas Reservoirs and Well Test Analysis. Fau-Blo Gas Field 25 (4), 477-483 (2018). DOI:
[4] D. Jamróz, T. Niedoba, A. Surowiak, Application of Multi-Parameter Data Visualization by Means of Multidimensional Scaling to Evaluate Possibility of Coal Gasification. Arch. Min. Sci. 62 (3), 445-457 (2017). DOI:
[5] Y. Cheng, H. Jiang, X. Zhang, J. Cui, C. Song, X. Li, Effects of Coal Rank on Physicochemical Properties of Coal and on Methane Adsorption. Int. J. Coal Sci. Technol. 4 (2), 129-146 (2017). DOI: s40789-017-0161-6
[6] Y. Tan, Y. Yin, G. Teng, Simulation Research of Gas Seepage Based on Lattice Boltzmann Method. J. China Coal Soc. 39 (8), 1446-1454 (2014). DOI:
[7] V . Mishra, N. Singh, Microstructural Relation of Macerals with Mineral Matter in Coals From is Valley and Umaria, Son-Mahanadi Basin, India. Int. J. Coal Sci. Technol. 4 (2), 191-197 (2017). DOI: s40789-017-0169-y
[8] C . Zhang, X. Liu, X. Wang, Combination Response Characteristics of Gas Seepage Velocity-Temperature Under Triaxial Loading. J. China Coal Soc. 43 (3), 743-750 (2018). DOI:
[9] J. Wei, L. Wei, D. Wang, Experimental Study of Moisture Content Influences on Permeability of Coal Containing Gas. J. China Coal Soc. 39 (1), 97-103 (2014). DOI:
[10] D. Zhang, Effect Analysis of Temperature on Seepage Characteristics Between Moulded Coal and Raw Coal. Safe Coal Min. 49 (4), 152-155+159 (2018). DOI: 13347/ j.cnki.mkaq.2018.04.040
[11] Y. Cai, X. Yang, Z. Tao, Q. Li, Experimental Study on Creep Seepage Coupling of Coal and Rock Containing Gas. Safety Coal Min. 47 (12), 19-22 (2016). DOI:
[12] D. Wang, M. Peng, J. Wei, Development and Application of Tri-Axial Creep-Seepage-Adsorption and Desorption Experimental Device for Coal. J. China Coal Soc. 41 (3), 644-652 (2016). DOI: jccs.2015.0659
[13] J. Wei, S. Wu, D. Wang, F. Li, Seepage Rules of Loaded Coal Containing Gas Under the Coupling Effect of Temperature and Axial Deformation. J. Min. Safety Eng. 32 (1), 168-174 (02015). DOI: cnki.jmse.2015.01.027
[14] Z. Zhang, B. Cheng, Study of a Non-Linear Seepage Model of Coal Containing Gas. J. China U. Min. Techno. 44 (3), 453-459 (2015). DOI:
[15] X . Yang, Z. Tao, B. Cai, Y. Lu, Numerical Simulation on Fluid-Solid Coupling of Gassy Coal and Rock. J. Liaoning Technical Univ. (Nat. Sci). 33 (8), 1009-1014 (2014). 2014. DOI: 0562.2014.08.001
[16] L. Min, Z. Bin, Cartesian Closed Categories of FƵ-Domains. Acta. Math. Sin. 29 (12), 2373-2390 (2013). DOI:
[17] B. Zhao, G. Wen, H. Sun, D. Sun, H. Yang, J. Cao, L. Dai, B. Wang, Similarity Criteria and Coal-Like Material in Coal and Gas Outburst Physical Simulation. Int. J. Coal Sci. Technol. 5 (2), 167-178 (2018). DOI: https://doi. org/10.1007/s40789-018-0203-8
[18] V .T. Presler, Modeling of Air-Gas and Dynamic Processes in Driving Development Workings in the Gas-Bearing Coal Seams. J. Min. Sci. 38 (2), 168-176 (2002). DOI:
[19] L. Sahu, S. Dey, Enrichment of Carbon Recovery of High Ash Coal Fines Using Air Fluidized Vibratory Deck Separator. Int. J. Coal Sci. Technol. 4 (3), 262-273 (2017). DOI:
[20] S. Nazary, H. Mirzabozorg, A. Noorzad, Modeling Time-Dependent Behavior of Gas Caverns in Rock Salt Considering Creep, Dilatancy and Failure. Tunn. and Undergr. Sp. Tech. 33 (1), 171-185 (2013). DOI: https://doi. org/10.1016/j.tust.2012.10.001
[21] L. Sahu, S. Dey, Enrichment of Carbon Recovery of High Ash Coal Fines Using Air Fluidized Vibratory Deck Separator. Int. J. Coal Sci. Technol. 4 (3), 262-273 (2017). DOI:
[22] W. Tanikawa, T. Shimamoto, Comparison of Klinkenberg-Corrected Gas Permeability and Water Permeability in Sedimentary Rocks. Int. J. Rock Mech. Min. 46 (2), 229-238 (2009). DOI: ijrmms.2008.03.004
[23] B. Zhang, X. Xie, Y. Liu, Numerical Simulation on Gas Seepage in Front of Working Face Based on Fluid-Solid- Heat Coupling. J. Safety Sci. Tech. 14 (3), 89-94 (2018). DOI: j.issn.1673-193x.2018.03.013
[24] M. Mlynarczuk, M. Wierzbicki, Stereological and Profilometry Methods in Detection of Structural Deformations in Coal Samples Collected from the Rock and Outburst Zone in The “Zofiowka” Colliery. Arch. Min. Sci. 54 (2), 189-201 (2009). DOI:

Przejdź do artykułu

Autorzy i Afiliacje

Zhu Bairu
Song Yang
Wu Beining
Li Yongqi

  1. Liaoning Technical University, School of Civil Engineering, Fuxin, Liaoning, 123000, China
Pobierz PDF Pobierz RIS Pobierz Bibtex


Gas explosions are major disasters in coal mining, and they typically cause a large number of deaths, injuries and property losses. An appropriate understanding of the effects of combustible gases on the characteristics of methane explosions is essential to prevent and control methane explosions. FLACS software was used to simulate an explosion of a mixture of CH4 and combustible gases (C2H4, C2H6, H2, and CO) at various mixing concentrations and different temperatures (25, 60, 100, 140 and 180℃). After adding combustible gases to methane at a constant volume and atmospheric pressure, the adiabatic flame temperature linearly increases as the initial temperature increases. Under stoichiometric conditions (9.5% CH4-air mixture), the addition of C2H4 and C2H6 has a greater effect on the adiabatic flame temperature of methane than H2 and CO at different initial temperatures. Under the fuel-lean CH4-air mixture (7% CH4-air mixture) and fuel-rich mixture (11% CH4-air mixture), the addition of H2 and CO has a greater effect on the adiabatic flame temperature of methane. In contrast, the addition of combustible gases negatively affected the maximum explosion pressure of the CH4-air mixture, exhibiting a linearly decreasing trend with increasing initial temperature. As the volume fraction of the mixed gas increases, the adiabatic flame temperature and maximum explosion pressure of the stoichiometric conditions increase. In contrast, under the fuel-rich mixture, the combustible gas slightly lowered the adiabatic flame temperature and the maximum explosion pressure. When the initial temperature was 140℃, the fuel consumption time was approximately 8-10 ms earlier than that at the initial temperature of 25℃. When the volume fraction of the combustible gas was 2.0%, the consumption time of fuel reduced by approximately 10 ms compared with that observed when the volume fraction of flammable gas was 0.4%.
Przejdź do artykułu


[1] Z. Li, M. Gong, E. Sun, J. Wu, Y. Zhou, Effect of low temperature on the flammability limits of methane/nitrogen mixtures. Energy 36, 5521-5524 (2011). DOI:
[2] B. Su, Z. Luo, T. Wang, J. Zhang, F. Cheng, Experimental and principal component analysis studies on minimum oxygen concentration of methane explosion. Int. J. Hydrog. Energy 45, 12225-12235 (2020). DOI: https://doi. org/10.1016/j.ijhydene.2020.02.133
[3] T. Wang, Z. Luo, H. Wen, F. Cheng, J. Deng, J. Zhao, Z. Guo, J. Lin, K. Kang, W. Wang, Effects of flammable gases on the explosion characteristics of CH4 in air. J. Loss Prev. Process Ind. 49, 183-190 (2017). DOI: https://
[4] G. Cui, S. Wang, J. Liu, Z. Bi, Z. Li, Explosion characteristics of a methane / air mixture at low initial temperatures. Fuel 234, 886-893 (2018). DOI:
[5] M. Gieras, R. Klemens, G. Rarata, P. Wolan, Determination of explosion parameters of methane-air mixtures in the chamber of 40 dm 3 at normal and elevated temperature. J. Loss Prev. Process Ind. 19, 263-270 (2006). DOI:
[6] H . Li, J. Deng, C.M. Shu, C.H. Kuo, Y. Yu, X. Hu, Flame behaviours and deflagration severities of aluminium powder-air mixture in a 20-L sphere: Computational fluid dynamics modelling and experimental validation. Fuel 276, 118028 (2020). DOI:
[7] M. Mitu, V. Giurcan, D. Razus, M. Prodan, D. Oancea, Propagation indices of methane-air explosions in closed vessels. J. Loss Prev. Process Ind. 47, 110-119 (2017). DOI:
[8] M. Mitu, M. Prodan, V. Giurcan, D. Razus, D. Oancea, Influence of inert gas addition on propagation indices of methane-air deflagrations. Process Saf. Environ. Protect. 102, 513-522 (2016). DOI: psep.2016.05.007
[9] B. Su, Z. Luo, T. Wang, C. Xie, F. Cheng, Chemical kinetic behaviors at the chain initiation stage of CH4/H2/air mixture. J. Hazard. Mater. 404, 123680 (2021). DOI:
[10] X.J. Gu, M.Z. Haq, M. Lawes, R. Woolley, Laminar burning velocity and Markstein lengths of methane-air mixtures. Combust. Flame. 121, 41-58 (2000). DOI:
[11] L. Liu, Z. Luo, T. Wang, F. Cheng, S. Gao, H. Liang, Effects of initial temperature on the deflagration characteristics and flame propagation behaviors of CH4 and its blends with C2H6, C2H4, CO, and H2. Energy Fuels 35, 785-795 (2021). DOI:
[12] Z. Luo, L. Liu, F. Cheng, T. Wang, B. Su, J. Zhang, S. Gao, C. Wang, Effects of a carbon monoxide-dominant gas mixture on the explosion and flame propagation behaviors of methane in air. J. Loss Prev. Process Ind. 58, 8-16 (2019). DOI:
[13] M. Reyes, F. V Tinaut, A. Horrillo, A. Lafuente, Experimental characterization of burning velocities of premixed methane-air and hydrogen-air mixtures in a constant volume combustion bomb at moderate pressure and temperature. Appl. Therm. Eng. 130, 684-697 (2018). DOI:
[14] T. Wang, Z. Luo, H. Wen, J. Zhao, F. Cheng, C. Liu, Y. Xiao, J. Deng, Flammability limits behavior of methane with the addition of gaseous fuel at various relative humidities. Process Saf. Environ. Protect. 140, 34 (2019). DOI:
[15] T. Wang, Z. Luo, H. Wen, F. Cheng, L. Liu, The explosion enhancement of methane-air mixtures by ethylene in a confined chamber. Energy 214, 119042 (2021). DOI:
[16] Y. Zhang, C. Yang, Y. Li, Y. Huang, J. Zhang, Y. Zhang, Q. Li, Ultrasonic extraction and oxidation characteristics of functional groups during coal spontaneous combustion. Fuel 242, 287-294 (2019). DOI :
[17] J. Zhao, J. Deng, T. Wang, J. Song, Y. Zhang, C.M. Shu, Q. Zeng, Assessing the effectiveness of a high-temperatureprogrammed experimental system for simulating the spontaneous combustion properties of bituminous coal through thermokinetic analysis of four oxidation stages. Energy 169, 587-596 (2019). DOI:
[18] A.A. Pekalski, H.P. Schildberg, P.S.D. Smallegange, S.M. Lemkowitz, J.F. Zevenbergen, M. Braithwaite, H.J. Pasman, Determination of the explosion behaviour of methane and propene in air or oxygen at standard and elevated conditions. Process Saf. Environ. Protect. 83, 421-429 (2005).
[19] K. Holtappels, Report on the experimentally determined explosion limits, explosion pressures and rates of explosion pressure rise – Part 1: methane, hydrogen and propylene Contact. Explosion 1, 1-149 (2002).
[20] M. Gieras, R. Klemens, G., Experimental Studies of Explosions of Methane-Air Mixtures in a Constant Volume Chamber. Combust. Sci. Technol. 37-41 (2009). DOI:
[21] E. Salzano, F. Cammarota, A. Di Benedetto, V. Di Sarli, Explosion behavior of hydrogene methane / air mixtures. J. Loss Prev. Process Ind. 25, 443-447 (2012). DOI:
[22] K.L. Cashdollar, I.A. Zlochower, G.M. Green, R.A. Thomas, M. Hertzberg, Flammability of methane, propane, and hydrogen gases. J. Loss Prev. Process Ind. 13, 327-340 (2000).
[23] H . Li, J. Deng, X. Chen, C.M. Shu, C.H. Kuo, X. Zhai, Q. Wang, X. Hu, Transient temperature evolution of pulverized coal cloud deflagration in a methane-oxygen atmosphere. Powder Technol. 366, 294-304 (2020). DOI:
[24] S. Zhang, H. Ma, X. Huang, S. Peng, Numerical simulation on methane-hydrogen explosion in gas compartment in utility tunnel. Process Saf. Environ. Protect. 140, 100-110 (2020). DOI:
[25] Y. Zhu, D. Wang, Z. Shao, X. Zhu, C. Xu, Y. Zhang, Investigation on the overpressure of methane-air mixture gas explosions in straight large-scale tunnels. Process Saf. Environ. Protect. 135, 101-112 (2019). DOI:
[26] J. Deng, F. Cheng, Y. Song, Z. Luo, Y. Zhang, Experimental and simulation studies on the influence of carbon monoxide on explosion characteristics of methane. J. Loss Prev. Process Ind. 36, 45-53 (2015). DOI:
[27] Gexcon, FLACS Manual. Gexcon, 2009.
[28] Z. Luo, R. Li, T. Wang, F. Cheng, Y. Liu, Z. Yu, S. Fan, X. Zhu, Explosion pressure and flame characteristics of CO/CH4/air mixtures at elevated initial temperatures. Fuel 268, 117377 (2020). DOI:
Przejdź do artykułu

Autorzy i Afiliacje

Zhenmin Luo
1 2
Litao Liu
1 2
Shuaishuai Gao
1 2
Tao Wang
1 2 3
Bin Su
1 2
Lei Wang
1 2
Yong Yang
4 2
Xiufang Li

  1. Xi’an University of Science and Technology, School of Safety Science & Engineering, 58, Yanta Mid. Rd., Xi’an, 710054, Shaanxi, PR China
  2. Shaanxi Key Laboratory of Prevention and Control of Coal Fire, 58, Yanta Mid. Rd, Xi’an, 710054, Shaanxi, PR China
  3. Xi’an University of Science and Technology, Postdoctoral Program, 58, Yanta Mid. Rd., Xi’an 710054, Shaanxi, PR China
  4. Xi’an University of Science and Technology, School of Safety Science & Engineering, 58, Yanta Mid. Rd., Xi’an, 710054, Shaanxi, PR
Pobierz PDF Pobierz RIS Pobierz Bibtex


Mine gas explosions present a serious safety threat in the worldwide coal mining industry. It has been considered the No.1 killer for underground coal mining workers. The formation of an explosive atmosphere involves various factors. Due to complicated stratified geology and the coal production process, geological conditions and coal production process reasons and particular working sections underground present a high risk of an explosion that would most likely cause casualties and property loss. In this study, the basic conditions, propagation law and hazards analysis of gas explosions are reviewed, followed by a review of the typical locations where an explosion would occur. Finally, current technologies used in the mining industry for preventing gas explosions and suppressing the associated dangers were studied. Preventive gas explosion technologies mainly include gas drainage, gas accumulation prevention and gas and fire source monitoring technologies. The technologies often used to control or mitigate gas explosion hazards are usually divided into active and passive, and the advantages and disadvantages of each method are discussed and compared. This paper aims to summarise the latest technologies for controlling and suppressing gas explosion and guides mining engineers to design risk mitigation strategies.
Przejdź do artykułu


[1] N . Gao, Y. Zhang, Y.T. Hu, Experimental study on methane-air mixtures explosion limits at normal and elevated initial temperatures and pressures. Explos. Shock Waves, 37 (3), 453-458 (2017). DOI: 1455(2017)03-0453-06
[2] S.K. Kundu, J. Zanganeh, D. Eschebach, N. Mahinpey, B. Moghtaderi, Explosion characteristics of methane-air mixtures in a spherical vessel connected with a duct. Process Saf. Environ. 111, 85-93 (2017). DOI: https://doi. org/10.1016/j.psep.2017.06.014
[3] S.K. Kundu, J. Zanganeh, B. Moghtaderi, A review on understanding explosions from methane-air mixture. J. Loss Prevent. Proc. 40, 507-523 (2016). DOI:
[4] B.Q. Lin, Q. Ye, C. Zhai, C.G. Jian, The propagation rule of methane explosion in bifurcation duct. J. China Coal Soc. 33 (2), 136-139 (2008).
[5] B.Y. Jiang, B.Q. Lin, C.J. Zhu, C. Zhai, Z.W. Li, Numerical Simulation on Shock Wave Propagation Characteristics of Gas Explosion in Parallel Roadway. J. Combust. Sci. Technol. 17 (3), 250-254 (2011).
[6] B. Lewis, G. V. Elbe, Combustion, flames & explosions of gases. Academic Press Inc. 73 (1), 107-108 (1987). DOI:
[7] Q. Zhang, L. Pang, H.M. Liang, Effect of scale on the explosion of methane in air and its shockwave. J. Loss Prevent. Proc. 24 (1), 43-48 (2011). DOI:
[8] I . Ivanov, A.M. Baranov, S. Akbari, S. Mironov, E. Karpova, Methodology for estimating potential explosion hazard of hydrocarbon with hydrogen mixtures without identifying gas composition. Sensors & Actuators: B. Chemical. 293, 273-280 (2019). DOI:
[9] C.J. Wang, S.Q. Yang, X.W. Li, Simulation of the hazard arising from the coupling of gas explosions and spontaneously combustible coal due to the gas drainage of a gob. Process Saf. Environ. 118, 296-306 (2018). DOI:
[10] T . Tomizuka, K. Kuwana, T. Mogi, R. Dobashi, M. Koshi, A study of numerical hazard prediction method of gas explosion. Int. J. Hydrogen Energ. 38 (12), 5176-5180 (2013). DOI:
[11] L . Pang, T. Wang, Y.S. Xie, W. Yao, Q. Zhang, Study on Hazard Effects of Gas Explosion in Coal Laneways. Adv. Mater. Res. 402, 846-849 (2012). DOI:
[12] Z.H. He, X.B. Li, L.M. Liu, W.J. Zhu, The intrinsic mechanism of methane oxidation under explosion condition: A combined ReaxFF and DFT study. Fuel. 124, 85-90 (2014). DOI:
[13] G . Cui, S. Wang, J.G. Liu, Z.X. Bi, Z.L. Li, Explosion characteristics of a methane/air mixture at low initial temperatures. Fuel. 234, 886-893 (2018). DOI:
[14] X.F. Meng, Q.L. Liu, X.C. Li, X.X. Zhou, Risk assessment of the unsafe behaviours of humans in fatal gas explo-sion accidents in China’s underground coal mines. J. Clean. Prod. 210, 970-976 (2019). DOI:
[15] J.W. Cheng, J. Mei, S.Y. Peng, C. Qi, Y. Shi, Comprehensive consultation model for explosion risk in mine atmosphere-CCMER. Safety Sci. 120, 798-812 (2019). DOI:
[16] J.W. Cheng, C. Qi , S.Y. Li, Modelling mine gas explosive pattern in underground mine gob and overlying strata. Int. J. Oil, Gas Coal Technol. 22 (4), 554-577 (2019). DOI:
[17] J.W. Cheng, C. Qi, W.D. Lu, K.X. Qi, Assessment Model of Stata Permeability Change Due to Underground Longwall Mining. Environ. Eng. Manag. J. 18 (6), 1311-1325 (2019). DOI:
[18] C. Geretto, S.C.K. Yuen, G. Nurick, An experimental study of the effects of degrees of confinement on the response of square mild steel plates subjected to blast loading. Int. J. Impact Eng. 79, 32-44 (2015). DOI: https://doi. org/10.1016/j.ijimpeng.2014.08.002
[19] K . Ghosh, S. Wang, Evolution of underground coal mine explosion law in Australia, 1887-2007. J. Australas. Min. Hist. 12, 81-97 (2014).
[20] S.G. Davis, D. Engel, K.V. Wingerden, Complex Explosion Development in Mines: Case Study – 2010 Upper Big Branch Mine Explosion. Process Saf. Prog. 34 (3), 286-303 (2015). DOI:
[21] J.W. Cheng, L. Wei, Failure Modes and Manifestations in a Mine Gas Explosion Disaster. J. Failure Anal. Prev. 14 (8), 601-609 (2014). DOI:
[22] S.Y. Li, The Unjust Soul Devoured by Gas – Following the “8 · 18” Major Gas Explosion in Baijiagou Coal Mine, Faku County, Liaoning Province. Hunan Secur. Disaster Prev. 02 (1) 50-53 (2009).
[23] G .J. Moridis, M.T. Reagan, A.F. Queiruga, S. Kim, System response to gas production from a heterogeneous hydrate accumulation at the UBGH2-6 site of the Ulleung basin in the Korean East Sea. J. Petrol. Sci. Eng. 178, 655-665 (2019). DOI:
[24] E.Y. Wang, P. Chen, Z.T. Liu, Y.J. Liu, Z.H. Li, X.L. Li, Fine detection technology of gas outburst area based on direct current method in Zhuxianzhuang Coal Mine, China. Safety Sc. 115, 12-18 (2019). DOI:
[25] J.J. Zhang, D. Cliff, K.L. Xu, G. You, Focusing on the patterns and characteristics of extraordinarily severe gas explosion accidents in Chinese coal mines. Process Saf. Environ. 117, 390-398 (2018). DOI:
[26] Y.P. Cao, Study on mechanism and prevention of gas accumulation in mine intermittent ventilation. PhD thesis, China University of Mining and Techonology. Xuzhou, June.
[27] A.D.S. Gillies, H.W. Wu, Emerging trends and adaptations of standards for stoppings and seals in Australian Mines. 303-314 (2000).
[28] B. Cheng, X. Cheng, Z.Y. Zhai, C.W. Zhang, J.L. Chen, Web of Things-Based Remote Monitoring System for Coal Mine Safety Using Wireless Sensor Network. Int. J. Distrib. Sens. Networks. 10 (8), 1329-1550 (2014). DOI:
[29] H .R. Wang, M.S. Wang, Z. Wang, Study of the Theory and Practice of Coal Mine Safety Monitoring Technology. Appl. Mech. Mater. 443, 294-298 (2014). DOI:
[30] X.L. Qin, M.C. Fu, L.H. Li, Research and Implementation of Key Technologies of Goaf Coal Spontaneous Combustion Wireless Monitoring System. Appl. Mech. Mater. 190, 1166-1169 (2012). DOI:
[31] X. Liu, H.Q. Zhang, Z.H. Zhang, Coal Mine Safety Monitoring System Based on ZigBee. Adv. Mater. Res. 918, 608-611 (2014). DOI:
[32] X.Q. Shao, X.M. Ma, The Design of Coal Mine Construction Safety Monitoring System. Appl. Mech. Mater. 174- 177, 3459-3462 (2012). DOI:
[33] Y. L. Li, C. K. Zhang, J. Y. Liu, J. Li, Visualization of Mining Monitoring Is the Development Direction of Coal Mine Safety Production. Adv. Mater. Res. 524-527, 391-395 (2012). DOI:
[34] J.K. Guo, Y.Y. Zhang, The Reliability Consideration of Coal Mine Safety Production Monitoring System Network. Energy Procedia. 17, 520-527 (2012). DOI:
[35] M.L. Harris, E.S. Weiss, C. Man, M.J. Sapko, G.V. Goodman, Rock dusting considerations in underground coal mines. In 13th US/North American Mine Ventilation Symposium, 2010 MIRARCO-Mining Innovation, Sudbury.
[36] R .M. Zhang, B.S. Nie, X.Q. He, C. Wang, C.H. Zhao, L.C. Dai, Q. Li, X.N. Liu, H.L. Li, Different gas explosion mechanisms and explosion suppression techniques. Procedia Eng. 261, 467-1472 (2011).
[37] C.K. Man, K.A. Teacoach, How does limestone rock dust prevent coal dust explosions in coal mines. Min. Eng. 61 (9), 61-69 (2009).
[38] Y. Luo, D.M. Wang, J.W. Cheng, Effects of rock dusting in preventing and reducing intensity of coal mine explosions. Int. J. Coal. Sci.Technol. 4 (2), 8-15 (2017). DOI:
[39] M.J. Mcpherson, Subsurface Ventilation and Environmental Engineering, 2012 Chapman & Hall, London.
[40] G .T. Linteris, M.D. Rumminger, V.I. Babushok, Catalytic inhibition of laminar flames by transition metal compounds. Prog. Energ. Combust. 34 (3), 288-329 (2007). DOI:
[41] Y. Koshiba, Y. Takahashi, H. Ohtani, Flame suppression ability of metallocenes (nickelocene, cobaltcene, ferrocene, manganocene, and chromocene. Fire Safety J. 51, 10-17 (2012). DOI:
[42] X.Y. Cao, J.J. Ren, Y.H. Zhou, Q.J. Wang, X.L. Gao, M.S. Bi, Suppression of methane/air explosion by ultrafine water mist containing sodium chloride additive. Hazard. Mater. 285, 311-318 (2015). DOI:
[43] H . You, M.G. Yu, L.G. Zheng, A. An, Study on Suppression of the Coal Dust/Methane/Air Mixture Explosion in Experimental Tube by Water Mist. Procedia Engineering. 26, 803-810 (2011).
[44] Z.Y. Wu, S.G. Jiang, H. Shao, K. Wang, X.R. Ju, W. Zou, W.Q. Zhang, L.Y. Wang, Experimental study on the feasibility of explosion suppression by vacuum chambers. Safety Sci. 50 (4), 660-667 (2012). DOI:
[45] Z.Y. Wu, S.G. Jiang, L.Y. Wang, H. Shao, K. Wang, W.Q. Zhang, H.W. Wu, W.W. Liang, Experimental study on explosion suppression of vacuum chambers with different scales. Procedia Earth and Planetary Science. 1 (1), 396-401 (2009). DOI:
[46] S.G. Jiang, Z.Y. Wu, Q.H. Li, X.J. He, H. Shao, J.H. Qin, L.Y. Wang, L.M. Hu, B.Q. Lin, Vacuum chamber suppression of gas-explosion propagation in a tunnel. Journal of China University of Mining & Technology. 18 (3), 337-341 (2008). DOI:
[47] H . Späth, A.S. Yu, N. Dewen, A New Dimension in Coal Mine Safety: ExploSpot, Active Explosion Suppression Technology. Procedia Eng. 26, 2191-2198 (2011). DOI:
[48] J.F. Wang, J.M. Wu, S. Yu, H. Spath, The Experiment Research of the Powder Jetting Performance for the South Africa HS Active Explosion Suppression System. Procedia Eng. 26, 388-396 (2011). DOI:
[49] J. Deng, X. Zhu, F.M. Cheng, Research Overview of Dodecafluoro-2-methylpentan-3-one Fire Suppression Agent Used in Gas Explosion Suppressio. Mines. Saf. Coal Mines. 48 (07), 181-183 (2017).
[50] M. Borowski, P. Życzkowski, R. Łuczak, M. Karch, J.W. Cheng, Tests to Ensure the Minimum Methane Concentration for Gas Engines to Limit Atmospheric Emissions. Energies. 13 (1), 44-58 (2020). DOI : en13010044
[51] X.X .Zhang, J.W. Cheng, C.L. Shi, X. Xu, M. Borowski, Y. Wang, Numerical Simulation Studies on Effects of Explosion Impact Load on Underground Mine Seal. Mining, Metallurgy & Exploration. 37 (4), 665-680 (2019). DOI:
[52] Y.L. Dong, X. Tian, H.L. Liu, Research and application of pressure-resistant, explosion-proof, fire-proof closed in strong impact mine. Architectural Engineering Technology and Design. 3 (26), 1815-1986 (2018).
[53] L .N. Qu, Experimental Research on Suppressing Gas Explosion by K and S-type Aerosol. MD thesis, Xi’an University of Science and Technology, Xi’an, June.
[54] X. Chen, F.Y. Wang, T.S. Liu, Study of Suppression Materials’ Characteristics and Effects on Gas explosion. Engineering Blasting. 18 (1), 100-102 (2012).
[55] Y.S. Cheng, Suppression characteristics of red-mud based composite powders with core-shell structure on methane explosion. MD thesis, Henan Polytechnic University, Jiaozuo, June.
[56] B.Y. Jiang, Z.G. Liu, M.Y. Tang, K. Yang, P. Lv, B.Q. Lin, Active suppression of premixed methane/air explosion propagation by non-premixed suppressant with nitrogen and ABC powder in a semiconfined duct. Nat. Gas Sci. Eng. 29, 141-149 (2016). DOI:
[57] Z.M. Luo, T. Wang, Z.H. Tian, F.M. Cheng, J.L. Deng, Y.T. Zhang, Experimental study on the suppression of gas explosion using the gasesolid suppressant of CO2/ABC powder. J. Loss Prevent. Proc. 30, 17-23 (2014). DOI:
[58] Q.M. Liu, Y.L. Hu, C.H. Bai, M. Chen, Methane/coal dust/air explosions and their suppression by solid particle suppressing agents in a large-scale experimental tube. J. Loss Prevent. Proc. 26, 310-316 (2013). DOI:
[59] X.F. Chen, Y. Zhang, Q.M. Zhang, S.F. Ren, J.X. Wu, Experimental investigation on micro-dynamic behavior of gas explosion suppression with SiO2 fine powders. Theor. App. Mech. Lett. 1 (3), 1-4 (2011). DOI:
[60] M.G. Yu, T.Z. Wang, H. You, A. An, Study on the effect of thermal property of powder on the gas explosion suppression. Procedia Eng. 26, 1035-1042 (2011). DOI:
[61] F. Zeman, Effect of steam hydration on performance of lime sorbent for CO2 capture. Int. J. Greenh. Gas Con. 2 (2), 203-209 (2008). DOI:
Przejdź do artykułu

Autorzy i Afiliacje

Wanting Song
Jianwei Cheng
Wenhe Wang
Yi Qin
Zui Wang
Marek Borowski
Yue Wang
Purushotham Tukkaraja

  1. China University of Mining and Technology, College of Safety Engineering, Xuzhou 221116, China
  2. Chongqing University of Science and Technology, College of Safety Engineering, Chongqing 401331, China
  3. AGH University of Science and Technology, Faculty of Mining Engineering, al. Mickiewicza 30, 30-059 Krakow, Poland
  4. Xinjiang Institute of Engineering, College of Safety Science and Engineering, Urumqi 830000, China
  5. South Dakata School of Mines and Technology, Department of Mining Engineering and Management, Rapid City, SD, 57701, United States
Pobierz PDF Pobierz RIS Pobierz Bibtex


The paper presents the results of a series of Cone Penetration Test CPTu performed near the city of Wroclaw (Poland). The tests were carried out in 13 testing points located in close distance to each other. To verify the results of the penetration tests, fine-grained soil samples from selected depths were taken for laboratory tests. The study focuses on the evaluation of soil type, unit weight, and undrained shear strength cu, and compression index Cc. The grain size distribution of the soil and its mechanical parameters on the basis of a uniaxial compression and an oedometer tests were estimated. A comparison of laboratory and CPTu for selected values is presented. Determination of soil type was carried out on the basis of ISBT and IC values and good agreement with the granulometric composition was found. For undrained shear strength, commonly used correlations based on Nk, Nkt and Nke were adopted. However, the values obtained from the CPT are significantly lower than the results from laboratory tests. Therefore, values of cone factors suitable for investigated soil type and reference test were proposed. In the case of the compression index, the coefficient values βc and αm obtained agreed with those available in the literature. The findings presented in the paper indicate that laboratory tests remain necessary to identify soil properties from CPTu. The presented results are also a contribution to the knowledge of local soil conditions in the Lower Silesia area (Poland).
Przejdź do artykułu


[1] F.H. Kulhawy, P.W. Mayne, Manual on estimating soil properties for foundation design (No. EPRI-EL-6800). Electric Power Research Inst., Palo Alto, CA (USA ); Cornell Univ., Ithaca, NY (USA ), Geotechnical Engineering Group (1990).
[2] T . Lunne, P.K. Robertson, J.J.M. Powell, Cone Penetration Testing in Geotechnical Practice. Blackie Academic/ Routledge Publishing, New York (1997).
[3] K . Karlsrud, T. Lunne, D.A. Kort, S. Strandvik, CPTU correlations for clays. In: Proceedings of the International Conference on Soil Mechanics and Geotechnical Engineering 16 (2), p. 693 (2005).
[4] P.K. Robertson, Interpretation of cone penetration tests — a unified approach. Can. Geoech. J. 46 (11), 1337-1355 (2009), DOI:
[5] P .K. Robertson, The James K. Mitchell Lecture: Interpretation of in-situ tests-some insights. In: Proc. 4th Int. Conf. on Geotechnical and Geophysical Site Characterization – ISC 4, 3-24 (2012).
[6] P .W. Mayne, Interpretation of geotechnical parameters from seismic piezocone tests. In: Proc. 3rd Intl. Symposium on Cone Penetration Testing, CPT’14, 47-73 (2014).
[7] A. Eslami, S. Moshfeghi, H. MolaAbasi, M.M. Eslami, Piezocone and Cone Penetration Test (CPTu and CPT) Applications in Foundation Engineering. Butterworth-Heinemann (2019).
[8] P.K. Robertson, Soil behaviour type from the CPT. In: Proc. 2nd Int. Symposium on Cone Penetration Testing, CPT’10 (2010).
[9] P.K. Robertson, Cone penetration test (CPT)-based soil behaviour type (SBT) classification system — an update. Can. Geotech. J. 53 (12), 1910-1927 (2016) DOI:
[10] P.K. Robertson, K.L. Cabal, Estimating soil unit weight from CPT. In: Proc. 2nd Int. Symposium on Cone Penetration Testing, CPT’10 (2010).
[11] P.W. Mayne, J. Peuchen, D. Bouwmeester, Soil unit weight estimation from CPTs. In: Proc. 2nd Int. Symposium on Cone Penetration Testing, CPT’10, (2010).
[12] L .Y. Ju, C. Miao, Z.J. Cao, P. Hubbard, K. Soga, K., D.Q. Li, Geo-Congress 2020: Modeling. Geomaterials and Site Characterization, 558-568 (2020).
[13] K . Karlsrud, K. Brattlien, T. Lunne, Improved CPTU interpretations based on block samples. NGI (1997).
[14] H.E. Low, T. Lunne, K.H. Andersen, M.A. Sjursen, X. Li, M.F. Randolph, Estimation of intact and remoulded undrained shear strengths from penetration tests in soft clays. Géotechnique 60 (11), 843-859 (2010), DOI:
[15] Z . Rémai, Correlation of undrained shear strength and CPT resistance. Per. Pol. Civil Eng. 57 (1), 39-44 (2013), DOI:
[16] A .K.M. Zein, International Journal of Geo-Engineering 8 (1), (2017), DOI: 0046-y
[17] P.W. Mayne, J. Peuchen, Evaluation of CPTU Nkt cone factor for undrained strength of clays. In: Proc. 4th Intl. Symposium on Cone Penetration Testing (CPT’18), 423-429 (2018).
[18] A. Drevininkas, G. Creer, M. Nkemitag, Comparison of consolidation characteristics from CPTu, DMT and laboratory testing at Ashbridges Bay, Toronto, Ontario. in: Proceedings of the 64th Canadian Geotechnical Conference and 14th PanAmerican Conference on Soil Mechanics and Geotechnical Engineering, Toronto, Canada (2011).
[19] K . Koster, G. Erkens, C. Zwanenburg, A new soil mechanics approach to quantify and predict land subsidence by peat compression. Geophysical Research Letters 43, 10792-10799 (2016), DOI: 071116
[20] M. Mir, A. Bouafia, K. Rahmani, N. Aouali, Analysis of load-settlement behaviour of shallow foundations in saturated clays based on CPT and DPT tests. Geomech. Eng. 13 (1), 119-139 (2017), DOI: gae.2017.13.1.119
[21] B. Di Buò, J. Selänpää, T. Lansivaara, M. D’Ignazio, Evaluation of existing CPTu-based correlations for the deformation properties of Finnish soft clays. In: Proc. 4th Int. Symposium on Cone Penetration Testing (CPT’18), 185-191 (2018).
[22] Z . Bednarczyk, R. Sandven, Comparison of CPTU and laboratory tests interpretation for Polish and Norwegian clays. In: International Site Characterization Conference, ISC-2. International Society of Rock Mechanics (ISRM), International Association Engineering Geology (IAEG), Geo-Institute of the American Society of Civil Engineers (ASCE), Portuguese Association of Engineers (OE) and British Council (BC). Porto, Portugal (2004).
[23] P . Zawrzykraj, P. Rydelek, A. Bąkowska, Geo-engineering properties of Eemian peats from Radzymin (central Poland) in the light of static cone penetration and dilatometer tests. Eng. Geol. 226, 290-300 (2017), DOI:
[24] J. Konkol, K. Międlarz, L. Bałachowski, Geotechnical characterization of soft soil deposits in Northern Poland. Eng. Geol. 259, 105187 (2019), DOI:
[25] J. Nawrocki, A. Becker (red.), Atlas geologiczny Polski. Państ. Inst. Geol., Warszawa (2017).
[26] PN -EN ISO 17892, Geotechnical investigation and testing. Laboratory testing of soil.
[27] PN -EN ISO 14688, Geotechnical investigation and testing. Identification and classification of soil.
[28] S. Shimobe, G. Spagnoli, Relationships between undrained shear strength, liquidity index, and water content ratio of clays. Bull. Eng. Geol. Environ. 79, 4817-4828 (2020), DOI:
[29] P.K. Robertson, C.E. Wride, Evaluating cyclic liquefaction potential using the cone penetration test. Can. Geoecht. J. 35 (3), 442-459 (1998), DOI:
[30] I. Bagińska, Estimating and verifying soil unit weight determined on the basis of SCPTu tests. Ann. Warsaw Univ. Life Sci. – SGGW. Land Reclam. 48 (3), 233-242 (2016), DOI:
[31] P.W. Mayne, Evaluating effective stress parameters and undrained shear strengths of soft-firm clays from CPT and DMT. Australian Geomechanics Journal 51 (4), 27-55 (2016).
[32] A. Cheshomi, Empirical relationships of CPTu results and undrained shear strength. J. GeoEng. 13 (2), 49-57 (2018), DOI:
[33] C.P. Wroth, The interpretation of in situ soil tests. Geotechnique 34 (4), 449-489 (1984), DOI:
[34] R. Larsson, M. Mulabdic, Piezocone tests in clay. Swedish Geotechnical Institute, Linköping, Report 42, (1991).
[35] Y .J. Shin, D. Kim, Assessment of undrained shear strength based on Cone Penetration Test (CPT) for clayey soils. J. Civ. Eng. 15 (7), 1161-6 (2011), DOI:
[36] A .H. El-Bosraty, A.M. Ebid, A.L. Fayed, Estimation of the undrained shear strength of east Port-Said clay using the genetic programming. Ain Shams Engineering Journal 11 (4), 961-969 (2020), DOI:
[37] L . Bałachowski, K. Międlarz, J. Konkol, Strength parameters of deltaic soils determined with CPTU, DMT and FVT. In: Proc. 4th Int. Symposium on Cone Penetration Testing (CPT’18), 117-121 (2018).
[38] S.J. Hong, M. Lee, J. Kim, W. Lee, Evaluation of undrained shear strength of Busan clay using CPT. In: Proc. 2nd Int. Symposium on Cone Penetration Testing, CPT’10 (2010).
[39] K . Koster, G. De Lange, R. Harting, E. de Heer, H. Middelkoop, Characterizing void ratio and compressibility of Holocene peat with CPT for assessing coastal–deltaic subsidence. Q. J. Eng. Geol. Hydrogeol. 51 (2), 210-218 (2018), DOI:
[40] G. Sanglerat, The Penetrometer and Soil Exploration. Dev. Geotech. Eng. (1972).
[41] P.W. Mayne, Cone penetration testing (Vol. 368). Transportation Research Board (2007).

Przejdź do artykułu

Autorzy i Afiliacje

Matylda Tankiewicz
Irena Bagińska

  1. Wrocław University of Environmental and Life Sciences, 25 Norwida Str., 50-375 Wrocław, Poland
  2. Wroclaw University of Science and Technology, 27 Wybrzeże Wyspiańskiego st., 50-370 Wrocław, Poland

Instrukcja dla autorów

General information

It is essential for us that authors write and prepare their manuscripts according to the instructions and specifications listed below. Therefore, authors are strongly encouraged to read these instructions carefully before preparing a manuscript for submission.

Archives of Mining Sciences (AMS) is concerned with original research, new developments and case studies in all fields of mining sciences which include:

- mining technologies,

- stability of mine workings,

- rock mechanics,

- geotechnical engineering and tunnelling,

- mineral processing,

- mining and engineering geology,

- mining geophysics,

- mining geodesy

- ventilation systems,

- environmental protection in mining,

- economical aspects in mining,

- mining machine science.

Papers are welcomed on all relevant topics and especially on theoretical developments, analytical methods, numerical methods, rock testing, site investigation, and case studies.

AMS publishes research and review articles, technical notes.

Papers suitable for publication in AMS are those which:

- contain original work - the main result is not published elsewhere neither by the authors nor somebody else, and is not currently under consideration for publication in any other journal,

- are focused on the core aims and scope of the journal,

- are clearly and correctly written in English.

Authors are required to contribute to the cost of publication – publication charge 1000 PLN or 250 Euro. There is no submission charge.

Electronic submission:

All submissions must be made electronically via Editorial System


The papers should be written in English.

Length of paper

The research and review articles may not exceed 16 typewritten pages, technical notes -10 pages, format A4 including figures and tables.


The initial submission should be sent as Microsoft World (Arial, 12 points, line spacing - 1,5) or pdf file with all drawings, pictures and tables placed in the text.

After acceptance the text (in Microsoft Word), figures and tables should be sent as separate files.

Layout of the manuscript

First and last name(s) of the author(s), title of the article, abstract, keywords, methodology and introduction to the topics, results, conclusions, acknowledgements and references. The subtitles should conform to the decimal system of numbering.


The abstract should briefly summarize the most important results reported in the paper (up to 200 words).

Keywords: 4-6 keywords


Formulae should be prepared with Microsoft Equation, written clearly with distinct notation of upper and lower indices and parentheses, maintaining an uniform numbering.


Tables should be prepared as separate file in Microsoft World format.


If possible, the figures should be prepared with a vector graphics software (.cdr, .wmf, .al or .dxf formats) or as .eps, .jpg, .bmp (figures width no greater than 13.5 cm). Use Arial font for the comments on drawings in size 6-10 points. The photographs should be converted to high resolution scans in *.jpg or *.tiff format. Figures should be submitted as separate files.


A new type of literature provision has been in force since 2020 – modified vancouver style.

Please follow the instructions below.

References should be typed on separate pages and numbered consecutively applying the system accepted by the Quarterly (initials and names all authors, title of the article (obligatory), journal title [abbreviated according to the Journal Title Abbreviations of Web of Science: everyone abbreviation should be end with a dot - example. Arch. Metall. Mater.] or book title; journal volume or book publisher; page spread; publication year in bracket, full DOI number).

Please note the correct layout punctation (commas and periods), and spaces.

Please note the arrangement of dots, commas and spaces.

First we write the initial of the name, dot, space, surname, volume must be written BOLD, at the name of the authors, do not write a word “and” write only a comma. We give the year of publication at the end of the sentence in brackets and DOI number (full notation and linked).

The use of DOI numbers (full notation and linked) is mandatory for each paper and should be formatted as shown in the examples below:



[1] L.B. Magalas, Development of High-Resolution Mechanical Spectroscopy, HRMS: Status and Perspectives. HRMS Coupled with a Laser Dilatometer . Arch. Metall. Mater. 60 (3), 2069-2076 (2015). DOI:

[2] E. Pagounis, M.J. Szczerba, R. Chulist, M. Laufenberg, Large Magnetic Field-Induced Work output in a NiMgGa Seven-Lavered Modulated Martensite. Appl. Phys. Lett. 107, 152407 (2015). DOI:

[3] H. Etschmaier, H. Torwesten, H. Eder, P. Hadley, Suppression of Interdiffusion in Copper/Tin thin Films. J. Mater. Eng. Perform. (2012). DOI:


[4] K.U. Kainer (Ed.), Metal Matrix Composites, Wiley-VCH, Weinheim (2006).

[5] K. Szacilowski, Infochemistry: Information Processing at the Nanoscale, Wiley (2012).

[6] L. Reimer, H. Kohl, Transmission Electron Microscopy: Physics of Image Formation, Springer, New York (2008).

Proceedings or chapter in books with editor(s):

[7] R. Major, P. Lacki, R. Kustosz, J. M. Lackner, Modelling of nanoindentation to simulate thin layer behavior, in: K. J. Kurzydłowski, B. Major, P. Zięba (Eds.), Foundation of Materials Design 2006, Research Signpost (2006).

Internet resource:

[8], accessed: 17.04.2017

Academic thesis (PhD, MSc):

[9] T. Mitra, PhD thesis, Modeling of Burden Distribution in the Blast Furnace, Abo Akademi University, Turku/Abo, Finland (2016).

Prevent cases of plagiarism

Readers should be sure that the authors present the results of their work transparently, fair and honest, regardless of whether they are the direct authors, or used the help of a specialized entity (natural or legal person). To prevent cases of plagiarism, "Copyright agreement", the Editorial Office will require that the Authors disclosed the contribution of individual Authors in the creation of manuscript (with their affiliations and contributions, i.e. the information who is responsible for: research concept and design, collection and/or assembly of data, data analysis and interpretation, writing the manuscript). Funding sources (together with grant number) must also be revealed. The corresponding Author will bear the main responsibility for the manuscript. Detected cases will be exposed, including notifying the appropriate entities (institutions employing the Authors, scientific societies, associations of editors of scientific journals, etc.).

License type

Articles are printed in an open access and distributed under the terms of the Creative Commons Attribution-NonCommercial (CC BY-NC 4.0,

This license allows authors to copy and redistribute the material in any medium or format, remix, transform, and build upon the material. Authors may not use the material for commercial purposes. However, this condition does not include dependent works (they may be covered by another license).

Submission of an article to the journal is unequivocal to expressing consent to the publication in both paper and electronic form.

Ta strona wykorzystuje pliki 'cookies'. Więcej informacji