Applied sciences

Archives of Electrical Engineering

Content

Archives of Electrical Engineering | 2016 | vol. 65 | No 2 June |

Download PDF Download RIS Download Bibtex

Abstract

Minimum energy control problem for the fractional positive electrical circuits is formulated and solved. Sufficient conditions for the existence of solution to the problem are established. A procedure for solving of the problem is proposed and illustrated by an example of fractional positive electrical circuit.
Go to article

Authors and Affiliations

Tadeusz Kaczorek
Download PDF Download RIS Download Bibtex

Abstract

The radial distribution system is a rugged system, it is also the most commonly used system, which suffers by loss and low voltage at the end bus. This loss can be reduced by the use of a capacitor in the system, which injects reactive current and also improves the voltage magnitude in the buses. The real power loss in the distribution line is the I2R loss which depends on the current and resistance. The connection of the capacitor in the bus reduces the reactive current and losses. The loss reduction is equal to the increase in generation, necessary for the electric power provided by firms. For consumers, the quality of power supply depends on the voltage magnitude level, which is also considered and hence the objective of the problem becomes the multi objective of loss minimization and the minimization of voltage deviation. In this paper, the optimal location and size of the capacitor is found using a new computational intelligent algorithm called Flower Pollination Algorithm (FPA). To calculate the power flow and losses in the system, novel data structure load flow is introduced. In this, each bus is considered as a node with bus associated data. Links between the nodes are distribution lines and their own resistance and reactance. To validate the developed FPA solutions standard test cases, IEEE 33 and IEEE 69 radial distribution systems are considered.
Go to article

Authors and Affiliations

V. Tamilselvan
T. Jayabarathi
Download PDF Download RIS Download Bibtex

Abstract

The paper presents a concept of an active filter with energy storage. This solution can be used for the compensation of momentary one phase high power loads with discontinued power consumption (e.g. spot welding machines). Apart from the typical filtering capabilities, the system’s task is also the continuity of the input power from the feeder line and limiting its fluctuation. The proposed by the author’s solution can produce measurable economic benefits by reducing the rated power necessary to energize periodically operating loads and improving the indicators of electrical energy quality. The developed method of active power surges compensation enables a flexible approach to requirements concerning the rated power of the point to which the periodically operating loads with high peak current value are connected. The tests were conducted on a simulation model specially developed in Matlab & Simulink environment, proving high effectiveness of the presented solution.
Go to article

Authors and Affiliations

Kacper Sowa
Stanisław Piróg
Marcin Baszyński
Download PDF Download RIS Download Bibtex

Abstract

Current source inverters (CSI) is one of the widely used converter topology in medium voltage drive applications due to its simplicity, motor friendly waveforms and reliable short circuit protection. The current source inverters are usually fed by controlled current source rectifiers (CSR) with a large inductor to provide a constant supply current. A generalized control applicable for both CSI and CSR and their extension namely current source multilevel inverters (CSMLI) are dealt in this paper. As space vector pulse width modulation (SVPWM) features the advantages of flexible control, faster dynamic response, better DC utilization and easy digital implementation it is considered for this work. This paper generalizes SVPWM that could be applied for CSI, CSR and CSMLI. The intense computation involved in framing a generalized space vector control are discussed in detail. The algorithm includes determination of band, region, subregions and vectors. The algorithm is validated by simulation using MATLAB /SIMULINK for CSR 5, 7, 13 level CSMLI and for CSR fed CSI.
Go to article

Authors and Affiliations

J. Anitha Roseline
M. Senthil Kumaran
V. Rajini
Download PDF Download RIS Download Bibtex

Abstract

This paper presents a finite element investigation into the proximity losses in a high-speed permanent magnet (PM) machine for traction applications. A three-dimensional (3D) finite element analysis (FEA) is employed to evaluate and identify the endwinding contribution into the overall winding power loss generated. The study is focused on the end-winding effects that have not been widely reported in the literature. The calculated results confirm that the end-winding copper loss can significantly affect the eddycurrent loss within copper and it should be taken into account to provide reasonable prediction of total losses. Several structures of the end-winding are analyzed and compared in respect to the loss and AC resistance. The results clearly demonstrate that the size of the end-winding has a significant impact on the power loss. The calculated results are validated experimentally on the high-speed permanent magnet synchronous machine (PMSM) prototype for selected various winding arrangements.
Go to article

Authors and Affiliations

Adrian Młot
Marian Lukaniszyn
Mariusz Korkosz
Download PDF Download RIS Download Bibtex

Abstract

Refined Schwarz-Christoffel (SC) conformal transformations allow us to perform reliable quantitative evaluation of the accuracy of local computation of electric and magnetic fields with limited effort, which can be useful to complement well known comparisons of global results. In this paper some examples are presented for mesh point potentials obtained by means of finite difference (FD) methods, but it is possible that similar considerations will be useful in the case of finite element methods (FEM) or meshless computations too.
Go to article

Authors and Affiliations

Eugenio Costamagna
Download PDF Download RIS Download Bibtex

Abstract

This paper presents a new, nondestructive method of testing brick wall dampness in wall structures. The setup was used to determine the moisture in a specially built laboratory model. Topological methods and the gradient technique are used to optimize the approach. A forward model of a wall was constructed to solve the inverse problem resulting in moisture buildup inside the wall.
Go to article

Authors and Affiliations

Tomasz Rymarczyk
Jan Sikora
Przemysław Adamkiewicz
Karol Duda
Jakub Szumowski
Download PDF Download RIS Download Bibtex

Abstract

The analysed permanent magnet disc motor (PMDM) is used for direct wheel drive in an electric vehicle. Therefore there are several objectives that could be tackled in the design procedure, such as an increased efficiency, reduced iron weight, reduced copper weight or reduced weight of the permanent magnets (reduced rotor weight). In this paper the optimal design of PMDM using a multi-objective genetic algorithm optimisation procedure is performed. A comparative analysis of the optimal motor solution and its parameters in relation to the prototype is presented.
Go to article

Authors and Affiliations

Goga Cvetkovski
Lidija Petkovska
Download PDF Download RIS Download Bibtex

Abstract

The development of a distributed generation will influence the structure of the power transmission and distribution network. Distributed sources have lower power and therefore the lines of lower voltage are used. Therefore, the electric field intensity near such lines is lower. On the other hand magnetic field intensity may prove essential. The main aim of the paper is to present a method estimating the “ballast” of the natural environment at 50 Hz electric and magnetic fields in the power system, with distributed and centralized generation in real operating conditions.
Go to article

Authors and Affiliations

Michał Zeńczak
Download PDF Download RIS Download Bibtex

Abstract

Hull consistency is a known technique to improve the efficiency of iterative interval methods for solving nonlinear systems describing steady-states in various circuits. Presently, hull consistency is checked in a scalar manner, i.e. successively for each equation of the nonlinear system with respect to a single variable. In the present poster, a new more general approach to implementing hull consistency is suggested which consists in treating simultaneously several equations with respect to the same number of variables.
Go to article

Authors and Affiliations

Lubomir Kolev
Download PDF Download RIS Download Bibtex

Abstract

In the field of power and drive systems, electrical AC machines are mostly modeled using a set of explicit ordinary differential equations in a state space representation. It is shown, that by using other equation types for simulation, algebraic constraints arising from aggregating several machines to a more complex system can directly be considered. The effects of different model variants on numerical ODE/DAE solvers are investigated in the focus of this work in order perform efficient simulations of larger systems possessing electrical AC machines.
Go to article

Authors and Affiliations

Michael Popp
Patrick Laza
Wolfgang Mathis
Download PDF Download RIS Download Bibtex

Abstract

In this paper we present the results of simulations of the Magnetic Induction Tomography (MIT) forward problem. Two complementary calculation techniques have been implemented and coupled, namely: the finite element method (applied in commercial software Comsol Multiphysics) and the second, algebraic manipulations on basic relationships of electromagnetism in Matlab. The developed combination saves a lot of time and makes a better use of the available computer resources.
Go to article

Authors and Affiliations

Krzysztof Stawicki
Beata Szuflitowska
Marcin Ziolkowski
Download PDF Download RIS Download Bibtex

Abstract

Since the so-called Hopf-type amplifier has become an established element in the modeling of the mammalian hearing organ, it also gets attention in the design of nonlinear amplifiers for technical applications. Due to its pure sinusoidal response to a sinusoidal input signal, the amplifier based on the normal form of the Andronov-Hopf bifurcation is a peculiar exception of nonlinear amplifiers. This feature allows an exact mathematical formulation of the input-output characteristic and thus deeper insights of the nonlinear behavior. Aside from the Hopf-type amplifier we investigate an extension of the Hopf system with focus on ambiguities, especially the separation of solution sets, and double hysteresis behavior in the input-output characteristic. Our results are validated by a DSP implementation.
Go to article

Authors and Affiliations

Marco Reit
Michael Berens
Wolfgang Mathis
Download PDF Download RIS Download Bibtex

Abstract

The paper attempts to determine the impact of fuel impurities on the spark discharge energy and the wear of the spark plug electrode. Spark plugs were analyzed in two typical configurations of the ignition system. A number of tests were conducted to determine the wear of the spark plug electrode exposed to different types of impurities. The spark discharge energy for new and worn spark plugs was determined through calculation.
Go to article

Authors and Affiliations

Sebastian Różowicz
Szymon Tofil
Download PDF Download RIS Download Bibtex

Abstract

Electromagnetic arrangements which create a magnetic field of required distribution and magnitude are widely used in electrical engineering. Development of new accurate designing methods is still a valid topic of technical investigations. From the theoretical point of view the problem belongs to magnetic fields synthesis theory. This paper discusses a problem of designing a shape of a solenoid which produces a uniform magnetic field on its axis. The method of finding an optimal shape is based on a genetic algorithm (GA) coupled with Bézier curves.
Go to article

Authors and Affiliations

Marcin Ziolkowski
Stanisław Gratkowski
Download PDF Download RIS Download Bibtex

Abstract

Most studies on solenoid valves (SVs) assumed that the armature is concentrically positioned in the sleeve. Under this assumption the transversal component of the magnetic force is equal zero. The article presents an analytical calculation model for the estimation of the armature eccentricity. Using this model the eccentricity was calculated as a function of the sleeve thickness and the hydraulic clearance between the armature and the sleeve. After finding the eccentricity also the permeance of the radial air gap was calculated. This permeance has a direct influence on the drop of the magnetomotive force in the magnetic circuit and finally influences also the axial component of the magnetic force. In the article a calculation of both transversal and axial components of the magnetic force was carried out and presented in the appendix to the article.
Go to article

Authors and Affiliations

Robert Goraj

Instructions for authors

ARCHIVES OF ELECTRICAL ENGINEERING (AEE) (previously Archiwum Elektrotechniki), quarterly journal of the Polish Academy of Sciences is OpenAccess, publishing original scientific articles and short communiques from all branches of Electrical Power Engineering exclusively in English. The main fields of interest are related to the theory & engineering of the components of an electrical power system: switching devices, arresters, reactors, conductors, etc. together with basic questions of their insulation, ampacity, switching capability etc.; electrical machines and transformers; modelling & calculation of circuits; electrical & magnetic fields problems; electromagnetic compatibility; control problems; power electronics; electrical power engineering; nondestructive testing & nondestructive evaluation.

This page uses 'cookies'. Learn more