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Plug-in direct particle swarm repetitive controller with a reduced
dimensionality of a �tness landscape { a multi-swarm approach
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Abstract. The paper describes a modi�cation to the recently developed plug-in direct particle swarm repetitive controller (PDPSRC) for
the sine-wave constant-amplitude constant-frequency (CACF) voltage-source inverter (VSI). The original PDPSRC algorithm assumes that
the particle swarm optimizer (PSO) takes into account a performance index de�ned over the whole reference signal period. Each particle
stores all the samples of the control signal, e.g. � = 200 samples for a controller working at 10 kHz and the reference frequency equal to
50 Hz. Therefore, the �tness landscape (i.e. the performance index) is �-dimensional (�D), which makes optimization challenging. That
solution can be categorized as the single-swarm one. It has been previously shown that the swarm controller does not su�er from long-term
stability issues encountered in the classic iterative learning controllers (ILC). However, the convergence of the swarm has to be kept at a
relatively low rate to enable successful exploitation in the �D search space, which in turn results in slow responsiveness of the PDPSRC.
Here a multi-swarm approach is proposed in which we divide a dynamic optimization problem (DOP) among less dimensional swarms. The
reference signal period is segmented into shorter intervals and the control signal is optimized in each interval independently by separate
swarms. The e�ectiveness of the proposed approach is illustrated with the help of numerical experiments on the CACF VSI with an output
LC �lter operating under nonlinear loads.

Key words: repetitive process control, dynamic optimization problem, particle swarm optimizer, repetitive disturbance rejection, non-
interacting subswarms, dimension-reduced �tness functional.

Nomenclature
2D { two-dimensional (here control system),
�D { �-dimensional (here optimization problem),

CACF { Constant-Amplitude Constant-Frequency (con-
verter),

DFF { Disturbance Feed-Forward,
DOP { Dynamic Optimization Problem,
FSF { Full-State Feedback (controller),
ILC { Iterative Learning Control(ler),

k-direction { pass-to-pass direction,
MMO { Multi-Modal Optimization,

p-direction { along the pass direction,
PDPSRC { Plug-in Direct Particle Swarm Repetitive Con-

troller (a basic approach),
PDMSRC { Plug-in Direct Multi-Swarm Repetitive Controller

(a novel approach),
PSO { Particle Swarm Optimization (-er),
RC { Repetitive Control(ler),

RFF { Reference Feed-Forward,
RMSE { Root Mean Squared Error (here calculated within

one period of a reference signal),
VSI { Voltage-Source Inverter,

� { number of samples per reference signal period,
�n { points of swarm division (points of subswarms’

adjacency),
i { swarm iteration identi�cation number/index,
j { particle identi�cation number/index,

J { cost functional,
k { pass (reference signal period) number,
n { subswarm identi�cation number/index,
p { sample identi�cation number,

�m { measurement signal corrupted with noise,
�ref { reference signal.

1. Introduction
The PDPSRC [1] was initially proposed for CACF inverters
with an LC output �lter but its use is not limited to this kind
of power electronic converters. That was the �rst step towards
a novel versatile stochastic repetitive controller. Its develop-
ment was motivated by unsatisfactory results obtained using
the classic ILC scheme. Most of the iterative learning con-
trollers (ILC) su�er from long term stability problems and
additional �ltering is essential to stabilize the system [2{6].
For example, the very basic P-type control law has to be mod-
i�ed into

u(p; k) = Q(z�1)u(p; k � 1) + L(z�1)kRCe(p; k � 1); (1)

where u denotes the control signal, e is the control error, kRC
is the controller gain, k is the iteration (pass, trial, cycle) in-
dex, p is the time index along the pass (1 � p � �, where
� is the pass length), with Q and L being usually non-causal
low-pass zero-phase-shift �lters. The formula (1) represents a
uniformed framework for ILC and repetitive control (RC) [7].
The main obstacle in practical implementation is that there are
no analytical methods for choosing the e�ective �ltering that
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will stabilize the system in the presence of a usually unknown
repetitive disturbance. Therefore, �lters are often selected by
guessing and checking. To ensure su�cient robustness, a low-
pass �ltering with a cut-o� frequency much below the Nyquist
limit has to be implemented, which in turn compromises the
e�ectiveness of the controller by reducing considerably its
bandwidth. That is why this scheme has not gained much
acceptance among power electronic practitioners whose con-
verters are usually subject to unknown repetitive load currents
of high harmonic content, including harmonics non-rejectable
due to plant limitations, and are expected to perform even hun-
dreds of millions repetitions without resetting. Nevertheless,
the classic ILC algorithm robusti�ed using various Q and
L design strategies o�ers high-performance practical position
control schemes and as such becomes more and more popu-
lar among motion control engineers [8{11] whose mechanical
repetitive systems are subject to often negligible exogenous,
i.e. unknown, repetitive disturbance forces, which makes the
design requirements easier to de�ne.

It should be noted that (1) with Q = L = 1 consti-
tutes the model of any repetitive signal and as such places
itself within the context of the internal model principle (IMP).
The same IMP is utilized to synthesize multi-resonant (multi-
oscillatory) controllers for selective harmonic disturbance re-
jection. By contrast, the multi-oscillatory controllers do not
su�er from long term stability problems and thus are one
of the best alternatives for a repetitive control of high-
performance CACF inverters [12{14]. The multi-oscillatory
controllers have also their limitations related to the problem-
atic implementation of oscillatory terms near the controller
bandwidth and the computational burden growing with the
number of harmonics needed to be rejected. They are also
sensitive to phase lags and in high-performance converters it
is required to take special measures to compensate for these
delays [15].

Recently, two new soft-computing approaches to repetitive
control have been proposed. In the �rst one an arti�cial neural
network (ANN) is used to shape the optimal control signal in
the iterative manner [16] and should not be confused with the
B-spline based voltage controller reported in [17] that employs
the idea scrutinized in [18], i.e. does not take advantage of a
global update rule. The polynomial and rational basis func-
tions are sometimes incorporated into repetitive systems to
produce a control signal which, i.a., is less prone to overlearn-
ing thanks to the smoothing e�ect and/or introduces inverse
dynamics to enhance transient performance. Some of the few
studied examples from motion control �eld are [19{21]. The
most recent approach to repetitive process control employs
PSO for direct optimization of the control signal in the online
mode [1]. The proposed swarm has been modi�ed to cope
with a dynamic optimization problem (DOP) brought about
by the non-stationarity of the disturbance. In [1] a single-
swarm solution is reported. Such a solution results in high
dimensionality of the �tness function that makes the on-line
search for a good suboptimal repetitive control signal a dif-
�cult task. In the single-swarm approach the swarm has to
be managed in such a way that its explorative ability is kept

at a high level. This in turn results in a slow convergence
rate. In order to overcome this di�culty and improve respon-
siveness of the swarm, without deteriorating its exploitative
ability, a multi-swarm repetitive controller is proposed here.
The name PDPSRC is then modi�ed into plug-in direct multi-
swarm repetitive controller (PDMSRC) to re
ect the nature of
the population used here. The performance of the controller
has been veri�ed through numerical simulation and selected
results are shown here to illustrate the possibility of reduc-
ing the dimensionality of the problem seen by the separate
subswarms without a major loss of output voltage waveform
quality.

The main contribution of this paper is the second step
towards a versatile swarm controller for repetitive processes
{ the step in which the responsiveness of the stochastic con-
troller is improved by replacing the single-swarm optimizer
used in [1] by its multi-swarm counterpart. It should be high-
lighted that the particle swarm optimization algorithm is not
used here in the o�ine mode to determine parameters in any
of the ILC schemes already reported in the literature. The
proposed swarm explicitly stores control signal samples and
minimizes a user-de�ned cost function in the online mode.
The optimization task at hand is then equivalent to control
task itself. No Q-�ltering (indispensable in (1)) is used here.
The robustness of the control system is shaped by the appro-
priate cost function selection { here by incorporating a penal-
ty for excessive control signal dynamics characteristic to the
overlearning phenomenon.

2. Plug-in direct multi-swarm repetitive
controller

Particle swarms are gaining more and more acceptance with-
in the DOP �eld. A representative set of swarm movement
laws e�ective in the dynamic environments can be found,
e.g., in [22]. The previously developed PDPSRC assumes a
single swarm travelling through the search space [1]. This
implies that a single particle stores all control signal samples
per period of a reference signal as depicted in Fig. 1. In the
proposed here PDMSRC, the task of online optimization of a
shape of the control signal according to a given performance
index has been divided between N independent swarms. This
means that the �-dimensional DOP has been split into less
dimensional DOPs and each of them has been assigned to a
di�erent swarm. In general, the task does not have to be split
evenly (Fig. 2). In this study only subswarms equal in their
dimensionality have been tested. However, later on some hints
are given about the possible advantages of swarms covering
particular parts of the control signal { not necessarily equal
in the number of samples.

The meanings of subswarm and multi-swarm terms used
throughout this paper should not be confused with their most
popular interpretations as, e.g., in [23]. Usually both of them
are used in the context of a multimodal optimization (MMO).
Here the problem is assumed to be unimodal. The swarm has
been divided into subswarms to reduce dimensionality for
each swarm, i.e. a single particle from a selected swarm does
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not carry complete candidate solution any more whereas in
a typical multimodal problem each particle in each subswarm
stores complete candidate solution. Moreover, in a typical
MMO information sharing between subswarms is not totally
suppressed whereas here subswarms operate in the mutually
exclusive subsets of dimensions and there is no information
exchange between them at all. The terms subswarm and swarm
can then be used here interchangeably because each subswarm
operates as an independent entity.

Fig. 1. The single-swarm approach: a single particle covers all the
� samples of the control signal related to the entire period of the

depicted reference signal

Fig. 2. The multi-swarm approach: a single particle from a subswarm
covers only the subset of samples of the control signal related to the
entire period of the depicted reference signal { the scenario with 3

swarms and a non-even task distribution

The form of the �tness function (performance index) is
identical for all subswarms and is as follows

J (k; n) = J0 +
�nX

p=�n�1+1

�
uref

C (p) � um
C (p; k)

�2

| {z }
penalty for control error

+ �
�nX

p=�n�1+2

(uPSO(p; k) � uPSO(p � 1; k))2

| {z }
penalty for control signal dynamics

;

(2)

where k is again the reference signal pass index, p is again the
sample index reset at each pass beginning, n 2 [1; N ] denotes
the subswarm identi�cation index, �n 2 f�1; �2; : : : ; �N g
de�ne junctions between subswarms and � is the subjective
penalty factor. It has been assumed that each junction point
belongs to the swarm on its left hand side. Also, �0 is always
equal to 0 yielding the beginning of the pass at index p = 1,
and �N , where N denotes the number of swarms, is identical

with � being the pass length equal to the single period of the
reference voltage uref

C . The positive constant J0 in (2) is in-
troduced to ensure positive de�nitiveness of the performance
index which is crucial for a knowledge evaporation mecha-
nism described later on in the paper. The superscript in um

C
denotes a measurement signal corrupted by the noise.

Since particles directly store samples of the control signal,
they can be represented using vectors as follows

qnj = [uj(�n�1 + 1); uj(�n�1 + 2); : : : ; uj(�n)] ; (3)

where j 2 f1; 2; : : : ; Sg, with S being the swarm size, is the
particle’s identi�cation number within the n-th swarm. In this
study all subswarms are equinumerable. The future control
signal is constructed from individual solutions by concatenat-
ing all NS vectors into a vector

uPSO
i = [q11(i); q21(i); : : : ; qN1(i); q21(i); : : : ;

qnj(i); : : : ; qNS(i)];
(4)

where i denotes swarm iteration number. The control signal
samples generated by the swarm form a time series as follows

uPSO =
�
uPSO

1 ; uPSO
2 ; uPSO

3 ; : : :
�

; (5)

which real-valued entries are equivalent to uPSO in (2) and
serve the same purpose as u in (1).

In this study the synchronous update rule is employed, i.e.
the subswarms, and thus also uPSO, are updated after passing
all �S consecutive control signal values to the PWM (pulse
width modulator). The swarm iteration should not be confused
with the reference signal period. It takes S such periods to
rate all particles in all subswarms. From the plant’s standpoint
the update in the k-direction takes place once per �S sam-
pling periods. However, it is possible to distribute in time most
PDPSRC/PDMSRC related calculations [24]. For example, (2)
can be calculated by adding increments after each sampling
time, (6) and (7) require invoking calculations for only one
dimension and only one particle in only one subswarm after a
given sampling instance. Hence the computational complexity
of the algorithm does not grow with an increasing number of
subswarms. Synchronization between all time indexes is il-
lustrated in Fig. 3. Their descriptions are collated in Table 1.
The resulting controller is depicted in Fig. 4. The PDMSRC
is accompanied by the RFF, FSF and RDF that are brie
y
described in Sec. 3.

Table 1
Integer time indexes

Index Symbol Max. value
Pass k +1
Sample p �
Subswarm n N
Particle j S
Swarm iteration i +1
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Fig. 3. Synchronization of the time indexes

Fig. 4. A schematic diagram of the control system including a full-state feedback controller and a repetitive disturbance feedforward path {
the exemplary nonlinear load depicted for clarity (the block labeled as Load)

The optimization task at hand is of the DOP type due to
varying load conditions. Therefore at least two mechanisms
have to be implemented { one to keep the swarm alive and
another one to gradually forget possibly outdated memories.
The simple idea of placing repellers at an already detected
gbest and stored in the swarm memory pbests [25] has been
used. A speed and position update rules are as follows

vnj(i + 1) = c1vnj(i) + c2rpbest�p

�
qpbest

nj � qnj(i)
�

+ c3rgbest�p
�
qgbest

n � qnj(i)
�
;

(6)

qnj(i + 1) = qnj(i)
+ minfmaxf�vclmp; vnj (i + 1)g; vclmpg;

(7)

where vnj and qnj are the velocity and position of the j-th
particle within the n-th subswarm, qpbest

nj stores the best so-
lution proposed so far by the j-th particle from the n-th sub-
swarm, qgbest

n denotes the best solution found so far by the
n-th subswarm, c1, c2 and c3 are the inertia, cognitive and so-
cial weights, respectively. A velocity clamping is implemented
and the maximum speed is vclmp. The random numbers rpbest

and rgbest are uniformly distributed in the unit interval. In all
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experiments described in this paper, the c1, c2 and c3 factors
have been calculated using the constricted PSO formula [26]
and are 0:73, 0:73�2:05 and 0:73�2:05, respectively. The direc-
tion variable �p, having value of �1 or 1, enables the swarms
to switch between attract and repel modes and is chosen to
be dimension-wise (p-wise), i.e. an individual control of di-
versity is possible in each search dimension. The Euclidean
radius has been selected as the diversity measure

Dp�wise
radius (p) =

1
2

(maxfqn1(p); : : : ; qnS(p)g

� minfqn1(p); : : : ; qnS(p)g)
(8)

and the attract and repel modes are being chosen according to
a user-de�ned diversity threshold Dthold that represents the
trade-o� between a steady-state control error and a controller
dynamics in the pass-to-pass direction, and has to be chosen
by guessing and checking.

The potentially outdated memory of the pbests, and at the
same time of the gbest being the best of all pbests, is handled
using the knowledge gradual evaporation concept [27]. This
mechanism forces particles to loose gradually their personal
best �tness Pnj according to the following rule

"
Pnj(i + 1)

qpbest
nj

#

=

=

8
>>>>>>><

>>>>>>>:

2

4
�Pnj(i)

qpbest
nj

3

5 if J (qnj(i + 1)) � �Pnj(i)

2

4
J (qnj(i + 1))

qnj(i + 1)

3

5 if J (qnj(i + 1)) < �Pnj(i);

(9)
where � has a positive value bigger than 1 for any positive-
de�nite functional J and an optimization task formulated as
the minimization one. The smaller the value of �, the slower
the transition to the new optimum after a change in the shape
of the load current whereas too big a value of � is detrimental
to the output voltage quality under the repetitive disturbance
due to too fast an evaporation of good solutions that in this
particular situation do not become outdated. The evaporation
constant has to be set by the trial and error method. It should
be noticed that the knowledge evaporation mechanism (9) does
not work for a positive semi-de�nite problem, because a zero-
valued solution cannot be "forgotten" by multiplying it by �.
Though it is highly unlikely that the sum of squared errors and
increments present in (2) would reduce to zero in any physical
system, it is still possible to get zero value from a theoretical
point of view. A positive o�set J0 in (2) is then added for
mathematical elegance. Its value along with � shapes the for-
getting process. Here a relatively small value of 0:01 has been
assumed which is practically negligible and the forgetting is
almost identical as for the sole sum of squares. Key parame-
ters of the swarm are collated in Table 2. A 
owchart of the
swarm repetitive control algorithm is depicted in Fig. 5.

Table 2
Parameters of the swarm

Parameter Symbol Value
Dimensionality of the problem � 200
Number of particlesa S 25
Swarms’ update frequency fref � S�1 2 Hz
Number of subswarmsb N 1, 2, 5, 10, 20 or 50
Points of divisionc (for �0 = 0) �n n �

N ^ n 2 f1; 2; : : : ; Ng
Evaporation constantd � 1.05, 1.10, 1.20, 1.40 or 1.50
Diversity threshold Dthold 1:5 � 325�1

Penalty factor � 0.25
Constant summand in cost function J0 0.01
Velocity clamping level vclmp 9.0
a identical for all subswarms
b selected case scenarios with subswarms that cover �

N dimensions each
c in this study evenly spaced throughout the period of the reference signal
d exemplary values { always speci�ed in captions

Fig. 5. A 
owchart of the swarm repetitive controller

The two above-mentioned DOP-enabling mechanisms are
pivotal to correct operation of the controller and so the evapo-
ration constant and the diversity threshold are two parameters
critical for the correct operation of the PSO. Also the velocity
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clamping level is useful in shortening the settling time in the
k-direction. At the moment, all of them have to be tuned by
guessing and checking. Fortunately, they have very straightfor-
ward interpretation and the optimization/control results are not
very sensitive with respect to changes in these settings, i.e. the
change of 10% in the evaporation constant, or the change of
50% in the diversity threshold or the velocity clamping level
do not render the algorithm ine�ective. These settings consti-
tute a compromise between the responsiveness (the ability to
react fast enough to environment dynamism caused by load
variations) and the steady-state voltage quality. The bigger the
evaporation constant and the diversity threshold, the faster the
transition to a new optimum. However, the bigger they are,
the weaker is the swarm’s ability to exploit the search space
and hence more distorted is the output voltage. The lower the
velocity clamping level, the more smooth the transition to a
new optimum. Nevertheless, this happens at the cost of the
transition duration, i.e. the responsiveness.

3. Full-state feedback controller
and disturbance feedforward

Clearly, the plug-in repetitive controller acts only in the k-
direction. Such a controller has to be assisted by a non-
repetitive controller acting in the p-direction. For the purpose
of this study, the full-state feedback (FSF) has been imple-
mented to increase damping in the highly underdamped plant
(compare Rf with Rcrit in Table 3). This gives control signal

uFSF = �(k11im
L + k12um

C ); (10)

additive to the PDMSRC output signal. In this particular study
the damping has been increased 5 times, i.e. FSF gains k11
and k12 have been determined using the pole placement proce-
dure to shift closed-loop poles 5 times deeper into the left-half
s-plane in respect to open-loop poles. The standard reference
feedforward (RFF) path

uRFF = (1 + k12)uref
C ; (11)

gives a unity gain for the zero frequency [28]. Also, the dis-
turbance static feedforward (DFF) path is introduced to com-
pensate the resistive voltage drop (for the zero frequency) [13]

uDFF = ( bRf + k11)im
load; (12)

where bRf is the identi�ed resistance of the output �lter and
im
load denotes the measured load current. A relatively high

identi�cation error is assumed in this study ( bRf = 0:5Rf)
to emphasize in
uence of the repetitive controller. Also the
prediction of the load current based on the previous pass pro-
posed in [29] to compensate the overall lag caused by a digital
implementation of the controller and an inherent delay of the
PWM has been omitted here in order to produce a more sig-
ni�cant control error for the PDMSRC and as a result to make
the case scenario more illustrative. The resulting control sig-
nal passed to the modulator

uPWM = uPSO + uRFF + uFSF + uDFF (13)

acts simultaneously in the along the pass direction and the
pass to pass direction.

Table 3
Parameters of the converter

Parameter Symbol Value
Filter inductance Lf 300 �H
Filter capacitance Cf 160 �F
Filter resistance Rf 0.2 

Filter resonant frequency fres 726 Hz
Critical damping resistance Rcrit 2.74 

Reference frequency fref 50 Hz
Sampling/PWM frequency fs 10 kHz
Pass length � 200
DC-link voltage kc 450 V
Measurement noise { ca. 1%
Voltage measurement gain ku 1/325 [1/V]
Current measurement gain ki 1/200 [1/A]
Recti�er power { ca. 6 kW
Recti�er current crest factor { ca. 2.5
Resistive load power { ca. 4 kW

4. Numerical experiment results
Selected parameters of the plant are given in Table 3. A test
scenario is as follows:

a) the swarms are initialized with near zero uPSO
0 control vec-

tor (no pre-tuning, e.g. for no load conditions, is assumed),
b) the resistive load of ca. 4 kW is applied for 200 s, 100 s or

50 s adequately to the swarm dynamics being evaluated,
c) the resistive load is switched o� and the diode recti�er

(ca. 6 kW, current crest factor of ca. 2.5) is switched on
for 200 s, 100 s or 50 s adequately to the swarm dynamics
being evaluated,

d) the diode recti�er is switched o� and the initial resistive
load is applied once again.

It is apparent from Fig. 6 that the 2-swarm approach is
more e�ective than the single-swarm in terms of convergence
rate without reducing the capability to explore e�ectively
the search space. All swarm movement parameters, such as
Dthold, vclmp and � have been left unchanged. The perfor-
mance improvement comes from problem dimensionality re-
duction. It should be noted that the multi-swarm algorithm
does not imply higher computational burden than the single-
swarm one. The amount of data to be stored and processed is
almost identical. It has been tested whether further increasing
of the number of subswarms is clearly bene�cial. Certainly,
at some point further division of the optimization task can be
even detrimental. For example, in the boundary case of single-
dimensional swarms, i.e. for the 1D optimization landscape,
it is impossible to calculate second term in (2) and this term
is required to prevent overlearning that could lead to instabil-
ity in the long horizon { an issue similar to the phenomenon
encountered in the classic ILC scheme. The performance of
the 2-swarm and 5-swarm controllers has been compared in
Fig. 7. Potential bene�ts of the 5-swarm algorithm over 2-
swarm one are disputable if identical relatively low evapora-
tion rates � are assumed. However, the gradual �tness evapo-
ration a�ects the quality of the output voltage uniquely for dif-
ferent optimization landscapes. It has been observed that faster
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knowledge evaporation is less deleterious if more subswarms
are used. This is illustrated in Fig. 8. In this particular setup
the 2-swarm controller is unable to track e�ectively the mov-
ing optimum in the noisy environment whereas its 5-swarm
counterpart does the job e�ectively. The root mean square er-
ror (RMSE) as a cumulative error indicator does not provide
comprehensive information on voltage quality. Therefore, the
output voltage is always scrutinized using instantaneous error
graphs. An example of such a graph for the 5-swarm con-
troller is given in Fig. 9. Also, the transient states caused by
load type change have been monitored visually in graphs de-
picting the evolution of output voltage in the k-direction as
in Fig. 10.

Fig. 6. Comparison of the RMSE graphs for the single-swarm and
2-swarm controllers

Fig. 7. Comparison of the RMSE graphs for the 2-swarm and
5-swarm controllers

Fig. 8. Comparison of the RMSE graphs for the 2-swarm and
5-swarm controllers in the case of fast knowledge evaporation

(� = 1:10)

Fig. 9. The shape of the output voltage under the diode recti�er
load for the 5-swarm controller { the load current, the commanded
average voltage for the VSI and the control error added for clarity

Fig. 10. The evolution of the output voltage after connecting the non-
linear load (the diode recti�er) for the 5-swarm repetitive controller

with � = 1:10

Only one minor disadvantage of the multi-swarm approach
in comparison with the single-swarm one has been identi�ed
during the study. It sometimes happens that the control sig-
nal at transition points between subswarms has clearly higher
increment in the p-direction than the signal proposed by a sin-
gle swarm. This is due to the lack of direct communication
between the swarms. The only interaction between optimizers
is through the physical plant itself. This implies that a giv-
en swarm strives to maximize its performance at the cost of
neighbours. However, this seems to be manageable taking in-
to account an overall quality of the output voltage waveform,
i.e. an acceptable tradeo� between the number of transition
points and the convergence rate can be worked out by the tri-
al and error method. This has been illustrated in Figs. 11{15
and 16, respectively. The less dimensional search subspace
is, i.e. the more swarms operate in parallel, the faster knowl-
edge evaporation can be applied due to a simpler landscape.
This, in turn, allows for a faster responsiveness of the swarm
when a shape of the load current changes. The PDMSRC
can e�ectively search for the optimal control signal even in
the near-extreme case of 50 swarms; however, the transitions
between swarms are not always quite smooth. This case has
been illustrated in Fig. 16 with vertical gray bars indicating
subsets of dimensions searched through by the subswarms (to
be compared with e.g. Fig. 12).
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Fig. 11. Evolution of the RMSE for the optimization space divided
into 20D subspaces, i.e. 10-swarm controller, and � = 1:20

Fig. 12. The shape of the output voltage under the diode recti�er
load for the 10-swarm controller and � = 1:20 { the load current,
the commanded average voltage for the VSI and the control error

added for clarity

Fig. 13. Evolution of the RMSE for the optimization space divided
into 10D subspaces, i.e. 20-swarm controller, and � = 1:40

Fig. 14. The shape of the output voltage under the diode recti�er
load for the 20-swarm controller and � = 1:40 { the load current,
the commanded average voltage for the VSI and the control error

added for clarity

Fig. 15. Evolution of the RMSE for the \extreme" case of optimiza-
tion space divided into 4D subspaces, i.e. 50-swarm controller, and

� = 1:50

Fig. 16. The shape of the output voltage under the diode recti�er
load for the 50-swarm controller and � = 1:50 { the load current,
the commanded average voltage for the VSI and the control error

added for clarity

The multi-swarm approach is clearly bene�cial with re-
spect to the convergence rate which is apparent from Figs. 8,
11, 13 and 15. These results also indicate that under the steady
nonlinear load conditions the output voltage quality is very
similar in terms of the RMSE performance index in all four
cases. The accompanying Figs. 9, 12, 14 and 16 also demon-
strate similar quality of the voltage waveforms at a steady
state. It can be read from the graphs that for this particular
plant going beyond 20 subswarms does not practically im-
prove the convergence rate any further. The recommendation
is then to synthesize such a controller using 10{20 subswarms.

It should be recalled that the subswarms do not necessar-
ily have to cover identical number of dimensions. It would be
bene�cial to avoid transitions between swarms at samples with
high absolutes values of the load current derivative. However,
this has been assumed to be out of the scope of the paper and
probably such an approach would be of no practical use due
to the lack of a priori knowledge about the shape of a load
current needed to determine optimal adjacent points for the
swarms.

5. Responsiveness in the pass-to-pass direction
As illustrated in Sec. 4, the proposed swarm controller is rel-
atively slow in the k-direction. However, it is important to
acknowledge that the controller action in the k-direction is
not designed to stabilize the system and shape the transient
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states on a sample-after-sample basis. This has to be rendered
by the non-repetitive part of the controller (here RFF, FSF
and DFF). The PDMSRC performs only �ne shaping of the
control signal from pass to pass. Obviously, its dynamics has
to match the anticipated frequency of disturbance load varia-
tions. For the proposed controller, if signi�cant load current
shape variations occur for periods of time shorter than ca.
20 s, the bene�ts are disputable. The reaction time in the k-
direction is bounded to be at the level of tens of seconds if the
PSO approach is utilized. It is widely recognized that usually,
i.e. for most of practical optimization problems, a su�cient
number of particles is around 30 and that an e�ective compro-
mise between exploration and exploitation requires hundreds
or even thousands of swarm iterations. It has been tested that
small swarms (of around 5 particles) do not perform well in
the proposed control system. The 25-particle swarm has been
identi�ed as the e�ective one and then selected as the base
for this study. This in turn implies that for the 50 Hz refer-
ence signal the swarms are iterated at 2 Hz. Since, even for
�tness landscapes with a reduced dimensionality, several tens
of iterations are needed to move the swarm e�ectively near
a new optimum, response times counted in tens of seconds
seem to be inevitable for the synchronous update rule used
here. Nevertheless, to the best of authors’ knowledge there are
systems that are characterized by load pro�les changing far
slower than on the tens of seconds scale. Additionally, present-
ed numerical experiments demonstrate that the multi-swarm
approach is more e�ective than the single-swarm one with
respect to its response time. This concept could be potentially
helpful also in other on-line optimization, e.g. estimation by
optimization, problems such as self-commissioning of electric
drives, which are time/iteration-critical.

It should be highlighted that in general the proposed multi-
swarm optimizer is not equivalent to its single-swarm coun-
terpart with respect to the optimal solution to be found. This
is due to the coupled nature of most real-life optimization
tasks which in turn implies that a problem with � decision
variables

J = f(u1; u2; : : : ; u�) (14)

cannot be easily (or at all) split into an equivalent set of N
subproblems

8
>>>><

>>>>:

J1 = f1(u1; : : : ; u�1 )
J2 = f2(u�1+1; : : : ; u�2)

...
JN = fN(u�N�1+1; : : : ; u�):

(15)

However, most real-life optimization problems in control sys-
tems are based on user-de�ned performance indices. It is the
engineer who designs �tness functions that are appropriate to
the problem at hand, i.e. that force a desired behaviour of the
system. This means that the problem is not necessarily bound
to be de�ned as (14). It has been illustrated with CACF VSI
that for the online swarm-based optimization it is bene�cial
to rede�ne the problem into the form of (15) and its lack of
equivalence to (14) occurs to be of little importance.

6. Practicalities
Optimal control is usually associated with optimal o�ine tun-
ing of controller gains. Computational burden of an optimiza-
tion algorithm is then of next to no importance as long as
the procedure can be completed in a reasonable time. By
contrast, in any online optimization task the computational
complexity of the algorithm becomes the major area of con-
cern. In the proposed PDMSRC, the PSO itself constitutes
the control algorithm and hence all the PSO related calcu-
lations have to be performed in real time. In large part the
choice of this particular optimization algorithm, as well as
all necessary modi�cations required to handle the dynamic
nature of the discussed optimization task, has been dictated
by their practicality in terms of real-time implementation on
an o�-the-shelf microcontroller. The execution of the PDM-
SRC code can be distributed along all �S sample periods as
illustrated in [30]. Moreover, the complexity of the algorithm
does not grow with the number of subswarms because the
more subswarms are introduced, the lower the dimensionality
of the particle becomes as shown in [31]. It has been tested
that the computational power of, e.g., the industrial microcon-
troller TMS320F2812 is su�cient to execute the swarm algo-
rithm featuring parameters given in Table 2 [24]. Regardless
of the number of subswarms, the amount of time necessary
to complete all calculations on this particular digital signal
controller is less than 30 �s. The physical implementation of
the controller is the subject of our current work.

7. Conclusions
A multi-swarm approach to a direct particle swarm repetitive
controller has been proposed and investigated. It has been
shown that the previously developed plug-in direct single-
swarm repetitive controller for the single-phase inverter with
the LC output �lter can be enhanced by applying the multi-
swarm concept. The optimization task has been divided into
several less dimensional subtasks, which occurs to simplify
the search. By doing so, the convergence rate of the swarm
is improved without a signi�cant loss of output voltage qual-
ity. The obtained numerical results suggest feasibility of the
developed algorithm for controlling the continuous repetitive
process of PWM VSI output voltage shaping. The proposed
algorithm is universal in the sense that it can serve as a plug-
in repetitive controller for any continuous repetitive process,
as well as for batch processes with a state resetting capability
at the beginning of each trial.
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