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Synchronization of fractional order
Rabinovich-Fabrikant systems

using sliding mode control techniques

SANJAY KUMAR, CHAMAN SINGH, SADA NAND PRASAD,
CHANDRA SHEKHAR and RAJIV AGGARWAL

In this research article, we present the concepts of fractional-order dynamical systems
and synchronization methodologies of fractional order chaotic dynamical systems using slide
mode control techniques. We have analysed the different phase portraits and time-series graphs
of fractional order Rabinovich-Fabrikant systems. We have obtained that the lowest dimen-
sion of Rabinovich-Fabrikant system is 2.85 through utilization of the fractional calculus and
computational simulation. Bifurcation diagrams and Lyapunov exponents of fractional order
Rabinovich-Fabrikant system to justify the chaos in the systems. Synchronization of two iden-
tical fractional-order chaotic Rabinovich-Fabrikant systems are achieved using sliding mode
control methodology.
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1. Introduction

Chaos, an inevitable phenomenon is the part of nonlinear systems. It is highly
sensitive to the initial conditions. This sensitivity is popularly known as the
butterfly effect [1]. Since Pecora and Carroll established the concept of chaos
synchronization with different initial conditions, it (chaos synchronization) has
been received much attention in the field of research. Synchronization of two or
more than two chaotic dynamical systems is one of most important applications of
chaos. Last several decades, chaos synchronization has been become the research
subject in the field of nonlinear sciences due to its potential application in vari-
ous disciplines such as – chemical reaction, power converters, aerospace, signal
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process, laser physics, secure communication, satellite systems and biological
systems [1–5].

Fractional calculus having old topic belong to more than 300 years ago in
history. In recent years, fractional-order dynamical systems have obtained much
interest in physical modeling phenomena and in the synthesis of strengthening of
controllers as well as secure communication and control processing. It has wide
application in many area of physics and engineering. It (fractional-order dynam-
ical systems) has attracted more attentions to scientists and researchers [6–8].

Sliding mode control (SMC) is a nonlinear control method. Its features has
remarkable properties of accuracy, robustness, simple tuning and implementation.
Sliding mode surface (SMS) systems are designed to drive the system states onto
a particular surface in the state space which is called sliding surface. When the
sliding surface is approached, sliding mode control methods applies the states
on the close neighbourhood of the sliding surface. The sliding mode control
methods (techniques) consist of the two part controller design. The first part
includes the design of a sliding surface so that the sliding motion satisfies design
specifications. The second involves the adaption of a sliding control methods that
will design the switching surface fascinating to the system state [2, 9–11].

Rabinovich-Fabrikant physical model is nonlinear ordinary differential equa-
tions describing the stochasticity arising from the modulation instability in a
non-equilibrium dissipative medium in 1979. This physical model have been
introduced and analyzed by Rabinovich and Fabrikant. The system behavior
depends sensibly on the parameters values [12, 13]. Khan and Tripathi have es-
tablished the synchronization between a fractional order Coullet chaotic system
and an integer order Rabinovich-Fabrikant chaotic system by using tracking con-
trol and stability theory of fractional order system [14]. Danca et al. have viewed
more closely to the Rabinovich-Fabrikant system [13]. Srivastava et al have intro-
duced their viewed on study of chaos of fractional order Rabinovich- Fabrikant
system and chaos controlled and synchronization between chaotic fractional order
Rabinovich-Fabrikant systems [15].

Motivated by the above discussions, we present the synchronization of frac-
tional order Rabinovich-Fabrikant systems using sliding mode control. Having
analyzed the different phase portraits and time-series graphs of fractional order
Rabinovich-Fabrikant systems, we have obtained that the lowest dimension of
Rabinovich-Fabrikant system is 2.85 through utilization of the fractional calculus
and computational simulation. Bifurcation diagrams and Lyapunov exponents of
fractional order Rabinovich-Fabrikant system is drawn to justify the chaos in the
systems. Two identical fractional-order chaotic Rabinovich-Fabrikant systems are
synchronized using sliding mode control techniques. These show the novelty of
our research paper.

This paper is organized as follows: section 1 is introduction; section 2 de-
scribes the basic concepts of fractional derivatives and its approximation; systems
description and sliding mode control methodology of fractional order systems are
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presented in section 3; in section 4, numerical simulations are used the synchro-
nization between identical fractional order Rabinovich-Fabrikant systems using
sliding mode control techniques; finally, conclusion is given in section 5.

2. Fractional derivatives and its approximation

Fractional calculus is a generalization concepts of integration and differenti-
ation to a non-integer-order integro-differential operator a Dα1

t . It is written as

a Dα1
t =



dα1

dtα1
, if R(α1) > 0,

1, if R(α1) = 0,
t∫

a

(dτ)−α1, otherwise, i.e. R(α1) < 0.

(1)

The generalized Riemann-Liouville denition [6] is defined as

Dα1 f (t) =
dα1

dtα1
Jn−α1 f (t), α1 > 0, (2)

where n = [α1]. n is taken as first integer which is not less than α1, J β1 is the
β1-order Riemann-Liouville integral operator. It is written as follows

J β1 f (t) =
1
Γ(β1)

t∫
0

f (τ)
(t − τ)1−β1

dτ (3)

for 0 < β1 ¬ 1, where Γ(.) is the gamma function.
The Caputo differential operator is defined as

Dα1 f (t) = Jn−α1 f n(t), α1 > 0, (4)

where n = [α1]. The operator Dα1 is called the Caputo differential operator
of order α1. It has been used firstly for the solution of practical problems by
Caputo [6, 7].

Some basic definitions and properties of fractional order derivatives and integrals

Definition 1 [6–8]: A real function f (t), t > 0 is said to be in Caputo space
Cα1 , α1 ∈ R if there exist a real number p (> α1), such that f (t) = tp f1(t);
where f1(t) ∈ C[0,∞).

Definition 2 [6–8]: A real function f (t), t > 0 is said to be in Caputo space
Cm
α1 , m ∈ N ∪ 0 if f (m) ∈ Cα1 .
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Definition 3 [6–8]: Let f ∈ Cα1 and α1  −1, then the Riemann-Liouville
integral of order α1 (α1 > 0) is given by

Iα1 f (t) =
1
Γ(α1)

t∫
0

(t − α1)α1−1 f (τ)dτ, t > 0. (5)

Definition 4 [6–8]: The Caputo fractional order derivative of f , f ∈ Cm
−1,

m ∈ N ∪ 0, is written as:

Dα1 f (t) =
dm

dtm f (t), α1 = m = Im−α1
dm f (t)

dtm ,

m − 1 < α1 < m, m ∈ N.
(6)

Note that for m − 1 < α1 ¬ m, m ∈ N,

Iα1 Dα1 f (t) = f (t) −
m−1∑
k=0

d k f
dtk (0)

tk

k!
, Iα1tα1 =

Γ(v + 1)
Γ(α1 + v + 1)

tα1+v . (7)

Consider the differential equations system as

dα1 x
dtα1

= f (t, x), 0 ¬ t ¬ T

and xk (0) = x (k)
0 , k = 0, 1, 2, · · · , n−1.

(8)

This differential equations system is similar to the Volterra integral equation
[16,17]

x(t) =
[α1]−1∑

k=0
x (k)

0
tk

k!
+

1
Γ(α1)

t∫
0

f (τ, x)
(t − τ)1−α1

dτ. (9)

Set h = T/N, tn = nh(n = 0, 1, 2, · · · , N ). Then equation can be discretized
as follows:

xh(tn+1) =
[α]−1∑
k=0

x (k)
0

tk
n+1
k!
+

hα1

Γ(α1 + 2)
f (tn+1, xp

h(tn+1))

+
hα1

Γ(α1 + 2)

∑
a j,n+1 f (t j, xh(t j )),

(10)

where the predicted value xp
h(tn+1) is obtained by

xp
h(tn+1) =

[α1]−1∑
k=0

tk
n+1
k!
+

1
Γ(α1)

n∑
j=0

b j,n+1 f (t j, xh(t j ))
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and

a j,n+1 =


nα1+1 − (n − α1)(n + 1)α1+1, if j = 0,
(n − j + 2)α1+1 + (n − jα1+1) − 2(n − j + 1)α1+1, if 1 ¬ j ¬ n,

1, j = n + 1;

b j,n+1 =
hα1

α1

(
(n − j + 1)α1 − (n − j)α1

)
.

The estimated errors of this approximation is written as e = Max|x(t j ) −
xh(t j ) | = O(hp)( j = 0, 1, · · · , N, ) in which p = Min(2, 1 + α1). Numerical
solution of a fractional-order system is determined by implementing this method.

Now, the fractional-order system is defined as

dα1 x
dtα1

= f1(x, y, z),

dα1 y

dtα1
= f2(x, y, z),

dα1 z
dtα1

= f3(x, y, z),

(11)

for 0 < α1 ¬ 1 with the initial condition x0, y0, z0. System (8) can be written as:

xn+1 = x0 +
hα1

Γ(α1 + 2)

 f1(xp
n+1, y

p
n+1, zp

n+1) +
n∑

j=0
γ1, j,n+1 f1(x j, y j, z j )

 ,
yn+1 = y0 +

hα1

Γ(α1 + 2)

 f2(xp
n+1, y

p
n+1, zp

n+1) +
n∑

j=0
γ2, j,n+1 f2(x j, y j, z j )

 ,
zn+1 = z0 +

hα1

Γ(α1 + 2)

 f3(xp
n+1, y

p
n+1, zp

n+1) +
n∑

j=0
γ3, j,n+1 f3(x j, y j, z j )

 ,
where

xp
n+1 = x0 +

1
Γ(α1)

n∑
j=0

ω1, j,n+1 f1(x j, y j, z j ),

y
p
n+1 = y0 +

1
Γ(α1)

n∑
j=0

ω2, j,n+1 f2(x j, y j, z j ),

zp
n+1 = z0 +

1
Γ(α1)

n∑
j=0

ω3, j,n+1 f3(x j, y j, z j ),
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γi, j,n+1 =


nα1+1 − (n − α1)(n + 1)α1+1, if j = 0,
(n − j + 2)α1+1 + (n − jα1+1) − 2(n − j + 1)α1+1, if 1 ¬ j ¬ n,

1, if j = n + 1;

ωi, j,n+1 =
hα1

α1

(
(n − j + 1)α1 − (n − j)α1

)
0 ¬ j ¬ n, i = 1, 2, 3.

3. Systems description and methodology by sliding mode control

Consider the chaotic system as

dα1 x(t)
dtα1

= Ax(t) + f (x(t)), (12)

where x ∈ Rn represents the state vector of the system. A represents the n × n
matrix of the system of parameters and f : Rn → Rn denotes the nonlinear part
of the system. System (12) is considered as the drive (master) system.

Corresponding response (slave) chaotic system is defined as:

dα1 y(t)
dtα1

= Ay(t) + f (y(t)) + u(t), (13)

where y ∈ Rn represents the state vector of the slave system and u(t) ∈ Rm is the
controller to be designed. For that,the synchronization error system is written as

e(t) = y(t) − x(t).

The error dynamics is written as

dα1e(t)
dtα1

= Ae(t) + θ(x, y) + u(t). (14)

Here, θ(x, y) represents the nonlinear parts of the fractional order chaotic system.
The controller u(t) for chaos synchronization problem is designed such that

lim
t→∞
∥e(t)∥ = 0 for e(0) ∈ Rn. (15)

For this, the controller u(t) is defined such that

u(t) = −θ(x, y) + Bυ(t), (16)

where B is a constant gain vector selected such that (A, B) is controllable.
υ(t) ∈ Rn represents the control input.
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From (14) and (16), the error dynamics is rewritten as

dα1e(t)
dtα1

= Ae(t) + Bυ(t). (17)

The system (17) is the linear time-invariant controller techniques system with
single input υ(t). The synchronization of fractional order systems is determined
by an equivalent systm of stabilizing the zero solution e(t) → 0 of the system
(17) through a suitable approaching of the sliding mode control techniques.

In the sliding mode control techniques, we take the variable [2] as,

s(e) = Me(t) = m1e1 + m2e2 + · · · + mnen , (18)

where M = (m1,m2, · · · ,mn) is the determined constant row vectors. The motion
of the system (17) to the sliding manifold is designed as

S = (x ∈ Rn such that s(e(t)) = 0). (19)

The invariant flow of the error dynamics (17) satisfies the conditions s(e(t)) =
0 is written in the sliding manifold as

⇒ dα1 s(e(t))
dtα1

= 0. (20)

This represents the necessary condition for the state trajectory e(t) of (17) to
be on the sliding manifold S. From (17) and (18), the equation (20) is rewritten as,

dα1 s(e(t))
dtα1

= M (Ae(t) + Bυ(t)) = 0. (21)

Solving (21) for υ, the equivalent control law is written as

υeq(t) = −(MB)−1MAe(t), (22)

where M is taken such that MB , 0. Substituting the equation (22) in the error
system (17), we have

dα1e(t)
dtα1

=
(
I − B(MB)−1M

)
Ae(t). (23)

Here, I denotes the identity matrix. The row vector, M is taken such that the
system matrix of the controlled dynamics

(
I − B(MB)−1M

)
A satisfies Hurwitz

stability criterion. That is, all eigenvalues of the above system has negative real
parts. This means that the error dynamical system (17) is asymptotically stable.
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The sliding mode controller techniques for the error dynamics system (17)
and the constant plus proportional rate reaching law is designed as

dα1 s(e(t))
dtα1

= −ρ sign(s) − σs, (24)

where sign(.) is the sign function and gain ρ > 0, σ > 0 are determined such
that sliding condition is satisfied.

From (21) and (24), the controlled invariant inputs υ(t) is obtained as

υ(t) = −(MB)−1 (
M (σI + A)e(t) + ρ sign(s)

)
, (25)

which gives

υ(t) =

−(MB)−1(M (σI + A)e(t) + ρs(e(t))), if s(e(t)) > 0,
−(MB)−1(M (σI + A)e(t) − ρs(e(t))), if s(e(t)) < 0.

(26)

Lemma 4 [2,11]: If the motion of sliding mode is asymptotically stable then the
following condition hold:

sT (e(t))
dα1 s(e(t))

dtα1
< 0. (27)

Theorem 1 [2]: The fractional order master system (12) and the fractional
order slave system (13) are asymptotically synchronized with the initial conditions
x(0), y(0) ∈ Rn through the feedback control law,

u(t) = −θ(x, y) + Bυ(t), (28)

where υ(t) is defined by (26) and B is a column vector such that (A,B) is
controllable. As well as the slide mode gain κ and ρ are taken as positive.

Proof. Substituting the (27) and (25) into the error dynamics (23), the closed-loop
error dynamics is written as

dα1e(t)
dtα1

= Ae(t) − B(MB)−1(M (σI + A)e(t) + ρ sign(s)). (29)

To prove the error dynamics (23) is asymptotically stable, we consider the
Lyapunov function,

V(e(t)) =
1
2

s2(e(t)). (30)

It is noted that

V(e(t))  0, for e(t) ∈ Rn and V(e(t)) = 0 ⇔ e(t) = 0.
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Thus, it implies that V is a positive definite function on Rn. Differentiated V
along the trajectories of (17) of the equivalent dynamics (24), we have

dα1V(e(t))
dtα1

= sT (e(t)) ṡ(e(t)) = −σs2 − ρ sign(s)s, (31)

which is the negative definite function of Rn. These determined that V is the

positive definite Lyapunov function for the error dynamics (17) and
dα1V(e(t))

dtα1

is the negative definite function.
Thus, by the Lyapunov stability theory [18], the error dynamics (17) is asymp-

totically stable with the initial condition e(0) ∈ Rn. We have

lim
t→∞

e(t) = 0.

Therefore, the fractional order master system (12) and the fractional order slave
system (13) are asymptotically synchronized and stable with the initial conditions
x(0), y(0) ∈ Rn.

4. Numerical results

Synchronization of identical fractional order Robinovich-Fabricant systems
by sliding mode control

Consider the chaotic Robinovich-Fabricant system [13]
ẋ = y(z − 1 + xx) + ax,
ẏ = x(3z + 1 − xx) + ay,
ż = −2z(b + xy).

(32)

Based on the above descriptions, we consider the new version fractional
Robinovich-Fabricant system as follows:

dα1 x
dtα1

= y(z − 1 + xx) + ax,

dα1 y

dtα1
= x(3z + 1 − xx) + ay,

dα1 z
dtα1

= −2z(b + xy),

(33)

where α1 is the fractional order satisfying 0 < α1 ¬ 1.
Two identical fractional order master (drive) and slave (response) systems for

Robinovich-Fabricant system (33) are rewritten with the subscripts of x and y
respectively as:
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Master system is:

dα1 x1
dtα1

= x2(t)(x3(t) − 1 + x1(t)x1(t)) + ax1(t),

dα1 x2
dtα1

= x1(t)(3x3(t) + 1 − x1(t)x1(t)) + ax2(t),

dα1 x3
dtα1

= −2x3(t)(b + x1(t)x2(t)).

(34)

Its fractional-order slave Robinovich-Fabricant system is:

dα1 y1
dtα1

= y2(t)(y3(t) − 1 + y1(t)y1(t)) + ay1(t) + u1(t),

dα1 y2
dtα1

= y1(t)(3y3(t) + 1 − y1(t)y1(t)) + ay2(t) + u2(t),

dα1 y3
dtα1

= −2y3(t)(b + y1(t)y2(t)) + u3(t),

(35)

where, u(t) = (u1, u2, u3) is the controller. Our aim is to determine the controller
u(t) such that the fractional-order master system synchronize the fractional-order
slave system. For this, we define the error signal for (34) and (35). The error
dynamics is written as:

e(t) = [e1(t), e2(t), e3(t)]T

e1(t) = y1(t) − x1(t), e2(t) = y2(t) − x2(t), e3(t) = y3(t) − x3(t).
(36)

The error dynamics is written as



dα1e1(t)
dtα1

=
dα1 y1(t)

dtα1
− dαx1(t)

dtα
= ae1(t) − e2(t)

+ (y2(t)y3(t) − y2(t)y3(t) + y2(t)y2
1 (t) − x2(t)x2

1(t)) + u1(t),

dα1e2(t)
dtα1

=
dα1 y2(t)

dtα1
− dαx2(t)

dtα
= e1(t) + ae2(t)

+ (3y1(t)y3(t) − y3
1 (t) − 3x1(t)x3(t) + x3

1(t)) + ay2 + u2(t),

dα1e3(t)
dtα1

=
dα1 y3(t)

dtα1
− dαx3(t)

dtα
= −2be3(t) − 2(y1(t)y2(t)y3(t) − x1(t)x2(t)x3(t)) + u3(t).

(37)

The error dynamical system in the matrix notation is written as

dα1e(t)
dtα1

= Ae(t) + θ(x, y) + u(t), (38)
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where,

A =

a −1 0
1 a 0
0 0 −2b

 ; θ(x, y) =

(y2y3 − x2x3 + y2y

2
1 − x2x2

1)
(3y1y3y

3
1 − 3x1x3 + x3

3)
(−2y1y2y3 + 2x1x2x3)

 ;

u(t) =

u1(t)
u2(t)
u3(t)

 .
Setting the the sliding mode controller, u(t) as,

u(t) = −θ(x, y) + Bυ(t), (39)

where B is taken such that (A,B) is controllable. We take B as B = (1, 1, 1)T .
The sliding mode variable is written as

s = Me = [−3, 2, 3]e = −3e1 + 2e2 + 3e3 , (40)

we take M = [4 4 1] such that the all eigenvalues of the matrix E = [I −
B(MB)−1M]A are negative real part or zero. That is,

eig(E) = (−4.9365, −0.5135, 0)

which determines that the sliding mode state equation system is asymptotically
stable. Taking the sliding mode gain as κ = 4, ρ = 0.1 and I is the identity matrix
of order 3. It is found that the larger value of κ can cause chattering (noise) and
an appropriate value of ρ is taken to increase the time for the sliding manifold as
well as to reduce the system chattering (noise) [2].

From (24), time-invariant controlled signal with single input, υ(t) is ob-
tained as

υ(t) = −(MB)−1(M (σI + A)e(t) + ρ sign(s))

= −1
2

*.,
[
−3 2 3

] 
4.86 1 0

1 4.86 0
0 0 −2.4

 e(t) + ρ sign(s)+/- ;
(41)

υ(t) =
[
3.35 −4.4 −6.6

]
e(t) − 0.05sign(s).

Thus, the required sliding mode controller is obtained as

u(t) = −θ(x, y) + Bυ(t).

Thus, the following results is obtained.
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Remark 1 The identical fractional order chaotic Robinovich-Fabricant sys-
tems (34) and (35) are asymptotically synchronized and stable with initial condi-
tions by the sliding mode controller u(t) which is defined in the equation (39).

Simulation:
We take initial condition for master and slave fractional order chaotic

Robinovich-Fabricant systems as
x(0) = (x1(0), x2(0), x3(0)) = (−1.1, 0.2, 0.5)T and
y(0) =

(
y1(0), y2(0), y3(0)

)
= (−1.5, 0.25, 0.75)T .

Take the parameters values a = −1.1, b = −0.2 and the lowest fractional or-
der α1 = 0.95. In Figure 1 (a–g) is shown the 3-D phase portrait with time
series figures chaotic Robinovich-Fabricant systems at different fractional order
α1 = 1, α1 = 0.89, α1 = 0.90, α1 = 0.91, α1 = 0.92, α1 = 0.94 and α1 = 0.95
respectively. Figure 2 (a–c) shown as bifurcation diagrams with respect to the
parameters a along the x1, a along the x2 and b along the x3 respectively. We
have computed the Lyapunov exponent of chaotic Robinovich-Fabricant system at

a)

b) c)
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d) e)

f) g)

Figure 1: 3 Dimensional phase portrait with time series graphs of chaotic Robinovich-
Fabricant systems (without controller).

a) b) c)

Figure 2: Bifurcation diagrams with with the parameter a along x1 axis, a along x2 axis
and b along x3 respectively
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t = 200. We have λ1 = 0.19941, λ2 = −0.038729 and λ3 = −1.9607. We observe
that out of these three Lyapunov exponent values, one is positive, one is negative
and one of these tends to zero which is required condition for chaotic systems.
It represents that fractional order Robinovich-Fabricant system is chaotic. It is
shown in Figure 3. Figures 4 (a–c) show the tracking the trajectories of slave
to master fractional order Robinovich-Fabricant systems in x1y1, x2y2 and x3y3
with sliding mode controllers. Trajectories of master and slave identical fractional
order Robinovich-Fabricant systems are synchronized with sliding mode control
techniques in these figure 4 (a–c). Figure 5 is shown the synchronization of error
dynamic of identical fractional order Robinovich-Fabricant systems in the form
of e1e2e3 with sliding mode control with respect to time t at the initial condition
e(0) = (e1(0), e2(0), e3(0)) = (−0.4, 0.05, 0.25)T . That is,

lim
t→∞

e(t) = 0.

Figure 3: Lyapunov exponent of chaotic Robinovich-Fabricant systems

a) b) c)

Figure 4: Tracking the trajectory of the master to the salve chaotic Robinovich-Fabricant
systems with order α1 = 0.95 (with controller)
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Figure 5: Synchronization of error dynamics of identical
Robinovich-Fabricant systems

5. Conclusions

In this research article, we have addressed fractional order chaotic systems
using sliding mode control techniques and the behaviour of fractional order
Robinovich-Fabricant systems. We have obtained the lowest fractional order of
Robinovich-Fabricant system through utilization of fractional calculus and com-
putational simulations. It is 2.85. We have shown bifurcation diagrams and Lya-
punov exponents fractional order chaotic Robinovich-Fabricant system. We have
established the synchronization of two identical fractional order Robinovich-
Fabricant systems using sliding mode control method.
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