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In binaural audio systems, for an optimal virtual acoustic space a set of head-related transfer func-
tions (HRTFs) should be used that closely matches the listener’s ones. This study aims to select the
most appropriate HRTF dataset from a large database for users without the need for extensive listening
tests. Currently, there is no way to reliably reduce the number of datasets to a smaller, more manage-
able number without risking discarding potentially good matches. A neural network that estimates the
appropriateness of HRTF datasets based on input vectors of anthropometric measurements is proposed.
The shapes and sizes of listeners’ heads and pinnas were measured using digital photography; the mea-
sured anthropometric parameters form the feature vectors used by the neural network. A graphical user
interface (GUI) was developed for participants to listen to music transformed using different HRTFs and
to evaluate the fitness of each HRTF dataset. The listening scores recorded were the target outputs used
to train the neural networks. The aim was to learn a mapping between anthropometric parameters and
listener’s perception scores. Experimental validations were performed on 30 subjects. It is demonstrated
that the proposed system produces a much more reliable HRTF selection than previously used methods.

Keywords: head-related transfer function; neural networks; localisation; music; audio; anthropometry;
pinna.

1. Introduction

Head-related transfer function (HRTF) datasets
are different for different people; efficiently obtaining
an appropriate HRTF dataset for a user is an ac-
tive area of research. The potential problems of us-
ing non-individualised HRTFs were discussed in Yao
and Chen (2013). If the HRTF dataset in a binau-
ral audio device does not match the real one of the
user, poor localisation happens. The direct way to ob-
tain individualised HRTFs is to perform HRTF mea-
surements (Gardner, Martin, 1994; Algazi et al.,
2001), but this is expensive and time consuming. An-
other approach is to mathematically model the acous-
tic properties of the head and ear. The spectral cues are
caused by the reflection and absorption from parts of

the listener’s body, such as the concha, head, and torso.
Several mathematical models were developed to model
how sound waves are affected by the geometry of a hu-
man body. Brown and Duda (1998) used Rayleigh’s
spherical model to generate the interaural time delay
(ITD) cues and a single-pole, single-zero head-shadow
filter to produce the interaural level difference (ILD)
cues. Batteau (1967) pointed out the direct sound
always accompanies multiple echoes when the sound
source travels to arrive at the ear canal. This is be-
cause of the delays caused by the reflecting surfaces
of pinna. Watkins (1978) formalised Batteau’s pinna
model (Batteau, 1967) as shown in Fig. 1. ρA and
ρV are reflection coefficients and τA and τB are time
delays. The complex geometry of the pinna and inner
ear is difficult to model accurately. Watkins (1978)
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Fig. 1. Batteau’s pinna model: ρ – reflection coefficient,
τ – time delay.

set ρA and ρV to unity. τA depends on the azimuth
angle and is between 0 and 80 µs. τB depends on the
elevation angle and is between 100 and 320 �s. Brown
and Duda (1997) empirically designed a pinna model
by the examination of the head-related impulse re-
sponse (HRIR) database. Their structure is presented
in Fig. 2. There are five reflection paths. Typical val-
ues of the gains ρk are shown in Table 1 and the delays
τk(θ, ϕ) are in the form of

τk (θ, ϕ) = Ak cos
(
θ

2

)
sin
(
Dk

(π
2 − ϕ

))
+Bk, (1)

where θ stands for azimuthal angle and ϕ, altitude an-
gle. Ak, Bk, and Dk are constants; typical values can
be found in Table 1.

Fig. 2. Modern pinna model: ρ – reflection coefficient,
τ – time delay, θ – azimuth, ϕ – elevation.

Table 1. Example values of the pinna model parameters.

k ρk Ak Bk Dk

1 0.50 1 2 1.0
2 −1.00 5 4 0.5
3 0.50 5 7 0.5
4 −0.25 5 11 0.5
5 0.25 5 13 0.5

Another approach to HRTF personalisation is to
select the closest matching HRTF dataset from an ex-
isting database. There are several HRTF databases
(Algazi et al., 2001; Ircam, 2002; Gupta et al., 2010)
available online, some of which release their partici-
pants’ anthropometric parameters such as head sizes

and ear sizes. HRTF dataset selection based on seven
anthropometric parameters of the pinna was proposed
in Zotkin et al. (2004). The seven anthropometric pa-
rameters are shown in Fig. 3. A distance measure based
on the sum of the squared errors between the measure-
ments of the listener and each of the database members
was calculated as

Eh =
7∑
i=1

(
d̂(i)− dh(i)

D(i)

)2

, (2)

where d̂(i) and dh(i) are the i-th anthropometric pa-
rameters of the listener and of the h-th member of the
database, and D(i) is the standard deviation of the
i-th anthropometric parameter, estimated over all the
database members. The HRTF dataset corresponding
to the minimum Eh was selected for the listener. The
method was developed on the basis of the idea that
each anthropometric parameter is equally important
to listening perception. However, the influence of an-
thropometric parameters is complicated, and HRTF
spectrum might be more sensitive to certain parame-
ters. As a result, we chose multi-layer perceptron to
deal with non-linear and multivariate functions.

Fig. 3. Pinna model and its parameters: d1 – cavum con-
cha height, d2 – cymba concha height, d3 – cavum concha
width, d4 – fossa height, d5 – pinna height, d6 – pinna

width, d7 – intertragal incisure width.

2. Experimental method

This paper aims to find a more reliable method of
selecting an appropriate HRTF dataset from an ex-
isting database. First, we randomly chose 18 HRTF
datasets together with their anthropometric parame-
ters from the CIPIC database (Algazi et al., 2001).
Secondly, subjects were asked to rate each of the 18
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HRTF datasets through a listening test. After the lis-
tening test, we measured the size of subjects’ heads
and took photos for their pinnas, so both their lis-
tening scores and personal anthropometric parameters
(Fig. 3) were recorded. From the results of these ex-
periments, a neural network was trained to predict the
level of HRTF fitness using just the anthropometric
parameters alone.

Listening tests were conducted to generate the
training data for the neural network. The listening
tests focused on front-back and up-down discrimina-
tions. In each case, the sounds to be distinguished lay
on the same cone of confusion and accurate HRTFs
are especially required for discrimination (Yao, Chen,
2012). In the first part of the experiment, we fixed the
azimuthal angle and changed the elevation to test up-
down discrimination. Then in the second part, the ele-
vation was fixed and the different azimuth angles were
presented to test front-back discrimination. Subjects
were asked whether or not they could distinguish the
two source positions in each test. If the localisation
was poor, this indicated that the HRTF dataset was
not a good match for the listener.

Although Table 2 shows that 20 is the reasonable
number of subjects participating in the listening test,
most researchers suggest that the sample size for us-
ing a statistical test should be larger than 30 (Pett,
1997; Salkind, 2004). We therefore recruited 18 male
subjects and 12 female participants for the experi-
ment. The authors of this paper did not double as sub-
jects. All participants were provided with participant
information sheets and signed consent forms in accor-
dance with the ethical conditions overseen by the Sci-
ence, Technology, Engineering and Mathematics Ethi-
cal Review Committee (ERN 13-0124) at the Univer-
sity of Birmingham and Research Ethics Committee
(201505HS090) at National Taiwan University.

Table 2. Numbers of participants addressed in the literature
survey associate with HRTFs.

References The number
of listeners

Chun et al. (2011) 8
Tan and Gan (1998) 10
Choi et al. (2011) 12
Gupta et al. (2002) 15
Zhang et al. (1998) 15
Ranjan and Gan (2015) 18
Shabtai and Rafaely (2014) 19
Masterson et al. (2012) 20

In the subjective test, the participants listened to
audio files generated using the 18 sets of HRTFs via
headphones. A subset of 18 HRTF datasets was se-

lected, rather than using the entire CIPIC database, in
order to prevent listeners’ fatigue. Each HRTF dataset
was used to produce two music files corresponding to
each of the two criteria: up-down discrimination and
front-back discrimination. There were 36 audio files in
total. In the first question, there were two separate
sound sources in the median plane with different ele-
vations, as shown in Fig. 4a. Monophonic sound was
convolved with the HRIRs corresponding first to the
position of the black dot, and then the grey dot. The
monophonic sound in our experiment was wide band-
width piano music. After listening to the two sound
sources, listeners were asked how well they could dis-
criminate the sources at the low elevation (the posi-
tion of the black dot) and then the high elevation (the
position of the grey dot). If the source at the high
and low elevation can be well discriminated, a high lis-
tening score is given. In the second question, listeners
were asked to assess the HRTFs from the database in
terms of the front-back confusion. The sound sources
were placed in the front hemisphere (the position of
the black dot) and then symmetrically in the back
hemisphere (the position of the grey dot) as indicated
in Fig. 4b. Listeners were asked how well they could
discriminate the sources coming from the front and
then the rear. If the source from the front and the
rear can be well discriminated, a high listening score
is given. The level of discrimination was recorded us-
ing the grade scale as shown in Fig. 5. Each HRTF
has two listening scores and the mean was calculated.
The user interface for the experiments is shown in
Fig. 6.

a) b)

Fig. 4. Experimental setup for: a) up-down confusion,
b) front-back confusion.

Fig. 5. Five-grade scale for localisation rating: “I can
discriminate the source at the high and low elevation”
and “I can discriminate the source in front from the

source in the back”.



368 Archives of Acoustics – Volume 42, Number 3, 2017

Fig. 6. Screen grab of the user interface in the first listening test.

The average listening scores are referred to as the
target data and are used to analyse the relationship be-
tween anthropometry and individualised HRTFs. The
anthropometry contains ten anthropometric parame-
ters, three of which are head width, head height, and
head depth as shown in Fig. 7. The remaining seven
are cavum concha height, cymba concha height, cavum
concha width, fossa height, pinna height, pinna width,
and intertragal incisure width from the pinna model in
Algazi et al., 2001, also as shown in Fig. 3.

Fig. 7. Anthropometric parameters of head model.

3. Neural network for HRTF selection

The selection of HRTF datasets based on the sum
of the squared errors, as presented in Eq. (2), uses
a linear contribution from each anthropometric param-
eter. This may not reflect appropriately the relation-
ship between the person’s anthropometric parameters
and the most suitable HRTF dataset. We employ neu-
ral networks which are capable of modelling complex
non-linear relationships. Through training, as shown in
Fig. 8, a neural network can learn the best mapping be-
tween the users’ anthropometric parameters and their
listening scores from the given set of training exam-
ples and, therefore, predict how suitable each HRTF
dataset will be for a new user. Multi-layer neural net-

Fig. 8. Neural network training schemes
for HRTF selection.

works are commonly trained using backpropagation:
a gradient decent algorithm, calculating the gradient
of a cost function with respect to the weights and the
biases in a neural network. They have been broadly
used in the vast majority of applications, such as pat-
tern association, pattern classification, data compres-
sion, and function approximation (Wythoff, 1993).
Two multi-layer feed-forward network structures were
created for each HRTF dataset in this paper, the aim
being to evaluate which structure provides the better
estimate of goodness of fit of each HRTF dataset for
a subject.

A neural network may contain one or more hidden
layers. The most suitable network structure and the
number of neurons in each layer are usually found ex-
perimentally. However, the network structure should
be selected in a way that the total number of pa-
rameters in the network is smaller than the num-
ber of training data points (Hagan et al., 2002). We
experimented with two neural network architectures:
a double-hidden-layer neural network and a single-
hidden-layer neural network. The double-hidden-layer
network, as depicted in Fig. 9, has a total of 21 ad-
justable parameters, 16 weights and 5 biases. The first
hidden layer and the second hidden layer contain one
neuron and three neurons, respectively. The single-
hidden-layer network, shown in Fig. 10, has a total

Fig. 9. Double-hidden-layer neural network structure used
for HRTF selection.

Fig. 10. Single-hidden-layer neural network structure used
for HRTF selection.



S.-N. Yao et al. – Head-Related Transfer Function Selection Using Neural Networks 369

of 25 adjustable parameters, 22 weights and 3 biases.
The hidden layer possesses two neurons. The hyper-
bolic tangent sigmoid transfer function is used in all
hidden layers. There is one neuron in the output layer
and this uses the log-sigmoid transfer function to pro-
vide a real value in the range (0,1) at the output of the
network. This is then scaled and offset to become in the
range from 1 to 5 in order to represent the predicted
listening score.

We created the neural networks as depicted in
Fig. 9 and Fig. 10 for each of the 18 HRTF datasets we
had. Each neural network was trained separately. Dur-
ing the training, the network automatically adjusts its
parameters, weights and biases, according to the train-
ing examples consisting of a set of anthropometric pa-
rameters as input features and a listening score as the
target output. We applied a leave-one-out procedure to
create the feature/target variables. That is, one sub-
ject’s data was selected as a sample under test, and
the others were applied to train the network system.
The input features of the training data are relative to
participants’ anthropometric parameters:


P1,1 P1,2

P2,1 P2,2

· · · P1,29

· · · P2,29
...

...

P10,1 P10,2

...
...

· · · P10,29

, (3)

where each column vector [ P1,k P2,k · · · P10,k ]T de-
notes the ten scaled anthropometric parameters of our
k-th participant. The feature scaling is presented in
Eq. (4), where d̂k(n) is the n-th parameter from the
k-th participant’ anthropometry, dh(n) is the n-th an-
thropometric parameter from the CIPIC’s h-th HRTF,
and D(n) is the standard deviation of d1(n), d2(n),
. . . d18(n), all the n-th anthropometric parameters in
the CIPIC database. There are 29 column vectors, be-
cause of the leave-one-out procedure. The whole ma-
trix is a requirement to train a neural network.

Table 3. Raw data of listening scores.
HRTF HRTF HRTF HRTF HRTF HRTF HRTF HRTF HRTF HRTF HRTF HRTF HRTF HRTF HRTF HRTF HRTF HRTF

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
Subject 1 4 3.5 4 4 4.5 4.5 4.5 4 2 3.5 4 3.5 3.5 3.5 3 5 4.5 4.5
Subject 2 3.5 3.5 4 3.5 3.5 4 4.5 3.5 4.5 3.5 4 3 3.5 4 4 4 5 4.5
Subject 3 3.5 3 4 3 3 3.5 4 4 3.5 4 3 3.5 3.5 3.5 4.5 3.5 3.5 4.5
Subject 4 3.5 3 3.5 4.5 3 4 4 4 3.5 3 3 4 3.5 3 4 5 4 4
Subject 5 4 3 3.5 3.5 5 4.5 4 4.5 4 3 2.5 3.5 1 3 2.5 2.5 3.5 3
Subject 6 3 3.5 2 3 3 2.5 2.5 2.5 2.5 2 2.5 2.5 3 2 3 2 3 2
Subject 7 3 3.5 3.5 3 3.5 3.5 3.5 4 3 3.5 3 3.5 3.5 3 3 4 3.5 3.5
...
Subject 22 2.25 3 2.5 2.5 4 4 4 2.75 4 2.25 3.25 3.75 3.5 2.75 2.5 2.5 2.75 3
Subject 23 1 1.5 1 1 1 1 1.5 1 1 1 3 2.5 2 1 2 2.5 3 2
Subject 24 2.5 3 2.75 2.75 3.25 2.5 2.5 3 2.5 2.75 3 2 1.75 3 2.5 3 2 2.5

Pn,k = d̂k(n)− dh(n)
D(n) ,

n = 1, 2, . . . , 10;

h = 1, 2, . . . , 18;

k = 1, 2, . . . , 29.

(4)

The target variables for the h-th HRTF network,
denoted by

[ sh,1 sh,2 · · · sh,29 ] (5)

correspond to the listening scores from our subjects
when using the h-th HRTF dataset. The raw listen-
ing scores were balanced before used. This is because
the same subjective ratings from different listeners can
present different meanings. For example, when looking
into Subject 2’s and Subject 3’ scores in Table 3, we
found the lowest score is 3. However, when looking into
Subject 23’s scores, 3 is the highest score. The mean-
ing of 3s in Subject 2’s and Subject 3’ scores are very
different from those in Subject 23’s scores. In order to
deal fairly with each subject’s scores, Eq. (6) is used
to balance the listening scores. Smin is the minimum
of a subject’s scores and Smax is the maximum. After
balance, the lowest scores are always equal to 1 and
the highest scores are always equal to 5. The balanced
scores are shown in Table 4.

Sbalanced(h) = 1 + 4 ·
(
S(h)− Smin

Smax − Smin

)
,

h = 1, 2, . . . , 18.
(6)

During testing, the anthropometric parameters of
a new user (who was not included in the training
data) were inputted to each of the networks. Accord-
ing to these parameters, the listening score for this
user was then predicted by each network giving 18
predicted scores. HRTF datasets were then ranked ac-
cording to those output scores and the prediction was
compared with the participant’s actual recorded ran-
king.



370 Archives of Acoustics – Volume 42, Number 3, 2017

Table 4. Balanced listening scores.
HRTF HRTF HRTF HRTF HRTF HRTF HRTF HRTF HRTF HRTF HRTF HRTF HRTF HRTF HRTF HRTF HRTF HRTF

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
Subject 1 3.67 3 3.67 3.67 4.33 4.33 4.33 3.67 1 3 3.67 3 3 3 2.33 5 4.33 4.33
Subject 2 2 2 3 2 2 3 4 2 4 2 3 1 2 3 3 3 5 4
Subject 3 2.33 1 3.67 1 1 2.33 3.67 3.67 2.33 3.67 1 2.33 2.33 2.33 5 2.33 2.33 5
Subject 4 2 1 2 4 1 3 3 3 2 1 1 3 2 1 3 5 3 3
Subject 5 4 3 3.5 3.5 5 4.5 4 4.5 4 3 2.5 3.5 1 3 2.5 2.5 3.5 3
Subject 6 3.67 5 1 3.67 3.67 2.33 2.33 2.33 2.33 1 2.33 2.33 3.67 1 3.67 1 3.67 1
Subject 7 1 3 3 1 3 3 3 5 1 3 1 3 3 1 1 5 3 3
...
Subject 22 1 2.71 1.57 1.57 5 5 5 2.14 5 1 3.29 4.43 3.86 2.14 1.57 1.57 2.14 2.71
Subject 23 1 2 1 1 1 1 2 1 1 1 5 4 3 1 3 4 5 3
Subject 24 3 4.33 3.67 3.67 5 3 3 4.33 3 3.67 4.33 1.67 1 4.33 3 4.33 1.67 3

4. Experimental results and discussion

The performance was evaluated by assessing how
many people would be offered their ‘favourite’ HRTF
datasets by using three different HRTF selection meth-
ods. The HRTF datasets with good listening scores
in the observed ranking are defined as the ‘favourite’
HRTF datasets. In the following, we present the exper-
imental results achieved when the HRTF is predicted
based on three different methods: the method minimis-
ing the total error (Zotkin et al., 2004) as given in
Eq. (2), the single-hidden-layer neural network struc-
ture as shown in Fig. 10, and the double-hidden-layer
neural network structure as shown in Fig. 9.

In Fig. 11, the x-axis indicates the number of top
ranked HRTF datasets that are selected and the y-axis

a) b)

Fig. 11. Performance of different HRTF selection methods when using a given number of top predicted HRTF datasets:
a) at least one of the HRTF datasets with first best score was found; b) at least one of the HRTF datasets with first best

or second best scores were found.

Table 5. Example ranking of Subject 1.
Predicted HRTF ranking for Subject 1

Best score −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ Worst score
HRTF HRTF HRTF HRTF HRTF HRTF HRTF HRTF HRTF HRTF HRTF HRTF HRTF HRTF HRTF HRTF HRTF HRTF

14 16 4 3 17 15 6 18 11 12 5 7 9 8 13 1 2 10
Observed HRTF ranking for Subject 1

Best score −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ Worst score
HRTF HRTF HRTF HRTF HRTF HRTF HRTF HRTF HRTF HRTF HRTF HRTF HRTF HRTF HRTF HRTF HRTF HRTF

16 18 17 7 6 5 11 8 4 3 1 14 13 12 10 2 15 9

indicates the proportion of subjects presented with
at least one of their favourite HRTF datasets within
the selection. Taking Subject 1’s predicted ranking as
shown in Table 5 as an example, when the number of
top ranked HRTF datasets is three, HRTF 14, 16 and 4
are selected. Because HRTF 16 is actually the fittest
dataset for Subject 1 (see the observed ranking in Ta-
ble 5), we can say that the prediction successfully in-
cludes the favourite HRTF dataset if three top ranked
HRTF datasets are selected. If we look into another
example ranking as shown in Table 6, the first three
top predicted HRTF datasets (HRTF 4, 16, and 18)
do not successfully include the favourite HRTF dataset
(HRTF 17) of Subject 2.

If the favourite HRTFs are defined to be the top
ranked HRTF dataset(s) in the observation, HRTF 16
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Table 6. Example ranking of Subject 2.
Predicted HRTF ranking for Subject 2

Best score −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ Worst score
HRTF HRTF HRTF HRTF HRTF HRTF HRTF HRTF HRTF HRTF HRTF HRTF HRTF HRTF HRTF HRTF HRTF HRTF

4 16 18 7 10 12 14 6 11 15 13 8 9 17 5 3 1 2
Observed HRTF ranking for Subject 2

Best score −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ Worst score
HRTF HRTF HRTF HRTF HRTF HRTF HRTF HRTF HRTF HRTF HRTF HRTF HRTF HRTF HRTF HRTF HRTF HRTF

17 18 9 7 16 15 14 11 6 3 13 10 8 5 4 2 1 12

a) b)

Fig. 12. Performance of different HRTF selection methods when using a given number of top predicted HRTF datasets:
a) at least one of the HRTF datasets graded of 4.5 or above was found; b) at least one of the HRTF datasets graded of 4

or above was found.

is the only favourite HRTF dataset for Subject 1.
Both HRTF 15 and 18 are called the favourite HRTF
datasets for Subject 3, because they owned the equal
best listening score (see Table 4). The results in
Fig. 11a show that when using the first three top pre-
dicted HRTF datasets out of 18, 40% of listeners would
be presented with their favourite HRTF datasets when
using either of the proposed neural network methods,
compared with only 23.3% of listeners when using the
total error (Zotkin et al., 2004). If the top and second
best ranked HRTF datasets are defined as the favourite
HRTF datasets (for example, through looking into Ta-
ble 4, HRTF 17, 18, 9, and 7 are called the favourite
HRTF datasets for Subject 2), the likelihoods that one
or more of them are included in the set of selected
HRTF datasets are shown in Fig. 11b. The results show
that using the first three top predicted HRTF datasets
out of 18, 80% of listeners are expected to find one of
their favourite HRTF datasets when using the double-
hidden-layer neural network. When the number of se-
lected HRTF datasets reaches nine (taking Table 5 as
an example, HRTF 16, 18, 17, 7, 6, 5, 11, 8, and 4 are
selected for Subject 1; taking Table 6 as an example,
HRTF 4, 16, 18, 7, 10, 12, 14, 6, and 11 are selected
for Subject 2), the single-hidden-layer neural network
is effective for 100% of population. When using the
total error method (Zotkin et al., 2004), 15 HRTF
datasets would be needed to be selected to satisfy all
of the listeners.

We also demonstrate the performance of HRTF se-
lection methods when redefining the set of favourite

HRTF datasets. If the favourite HRTF datasets are de-
fined to mean those having the balanced score 4.5 or
above (for example, HRTF 5, 6, and 8 are Subject 5’s
favourite HRTF datasets in Table 4), the achieved per-
formance when at least one favourite dataset is in-
cluded in the set of selected HRTF datasets is shown
in Fig. 12a. If we select the nine top ranked predicted
HRTF datasets or fewer, both neural network meth-
ods satisfy 10% more participants than the total er-
ror method does. If the threshold defining a favourite
dataset is reduced to 4 (in this case, HRTF 1, 5, 6, 7,
8, and 9 are Subject 5’s favourite HRTF datasets in
Table 4), Fig. 12b shows the percentages of population
presented with at least one favourite HRTF dataset.
The neural network-based methods still outperform
the total error-based selection, presenting consistently
good reliability. In Fig. 11 and Fig. 12, the perfor-
mances of the single-hidden-layer structure are similar
to those of the double-hidden-layer structure in most
cases. Those figures also demonstrate the linear combi-
nation of mean squared errors (MSEs) between pinna
parameters are not enough when we predict favourite
HRTFs.

5. Conclusion

Although an individual’s HRTF varies in a com-
plex way with morphological features of human body,
we have demonstrated that neural networks can be em-
ployed to select the best fit HRTF dataset for a subject
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from existing databases. The experimental outcomes
also indicate that the previous method based on the
sum of the squared error between pinna parameters
is not sufficient to accurately predict favourite HRTF
datasets.

The anthropometric parameters we selected are
from a head model and a pinna model, because these
two models cover three important localisation cues:
ILD, ITD, and pinna filtering (Collins, 2013). In our
future work, the number of features will increase. That
is, we plan to extend the parameter set to also include
shoulder, torso, and knee reflections, as well as extend
the network complexity. It is hoped that this could im-
prove the HRTF ranking prediction further. Moreover,
fuzzy rules will be applied to the neural network archi-
tecture. This is because one of the criticisms of artifi-
cial neural networks is the hardly-justified relationship
between inputs and outputs (Dave, Dutta, 2014).
There have been several fuzzy rule-based systems pro-
posed to interpret encoded information (Ideri et al.,
2004; Benitez et al., 1997; Jang, Sun, 1992). When
neural networks are not seen as black boxes, the an-
thropometric parameters dominating most of HRTFs
will be revealed.

The five-grade scale will be replaced by the two-
alternative forced choice (2AFC) method, which is
a ubiquitous choice for measuring detection or dis-
crimination thresholds (Fechner, 1860) and has been
commonly used to test speed and accuracy of choices
between two alternatives given a timed interval. By re-
stricting a subject’s response to a binary decision, the
2AFC will allow subjects to perform a simpler decision
task than the scaling methods in this paper.
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