The quarterly Polish Polar Research edited by the Committee on Polar Research of the Polish Academy of Sciences is an international journal publishing original research articles presenting the results of studies carried out in polar regions.
All papers are peer-reviewed and published in English.
The Editorial Advisory Board includes renowned scientist from Poland and from abroad.
Polish Polar Research is indexed in Science Citation Index Expanded, Journal Citation Reports/Science Edition, Biological Abstracts, BIOSIS Previews, Cold Regions Bibliography, Antarctic Literature, Geological Abstracts, Polish Scientific Journals Contents - Agricultural and Biological Sciences, Quarterly Review, and Zoological Record.
FRAUD NOTICE
We have been made aware of certain fraudulent activities that have been claiming to represent Polish Polar Research. These activities include a fake, predatory website and unsolicited emails. The aim of the fraud is to trick suspected authors/researchers into believing they are communicating with a journal editor in order to obtain their personal information, scientific results and/or money. Polish Polar Research’s name, logo and other information have been used without permission to try to convey authenticity. If you have any concerns or see suspicious communications that reference Polish Polar Research, please report to Editors-in-Chief. Legitimate information regarding Polish Polar Research and its manuscripts can always be found on our website at http://journals.pan.pl/ppr/. We recommend that authors do not respond to any unsolicited offers of manuscript submissions nor enter any monetary agreement.
Polish Polar Research is an open-access journal in which archive issues are freely accessible and articles are published at no cost to authors.
Upper Cretaceous calcareous nannoplankton recycled into the Pliocene Pecten Conglomerate of Cockburn Island (Antarctic Peninsula) provide a paleontological record of Upper Cretaceous sedimentary sequences in the James Ross Basin. The calcareous nannofossil assemblage comprises nearly 40 taxa and is dominated by Campanian-Maestrichtian species. The investigated assemblage shares some features with the southern high-latitude contemporaneous calcareous nannofossil assemblages from outcrops on adjacent Seymour (Marambio) Island and many with deep-sea drilling sites in the circum-Antarctic region.
Fossil bird remains assignable to ratites (palaeognathous birds) are described from the Paleogene strata of the La Meseta Formation of Seymour Island, Antarctic Peninsula. This record sheds new light on Gondwana's avian history.
On the basis of about 12500 depth measurements of which 6700 were taken from r/v Profesor Siedlecki, 1300 from r/v Polarstern and the remainder from British navigation charts, a bathymetric chart of the Bransfield Strait in the scale 1:500 000 has been prepared. Within the assumed boundaries the total area of the Bransfield Strait covers 65308.6 square kilometres, of which the Western Basin covers 23.5%, Central Basin — 47.3%, and Eastern Basin 29.2%. Capacity of the whole Bransfield Strait amounts to 38451 km3 . The average depth of the Bransfield Strait is 592 m.
Roemeripora tollinoides sp. n. (Anthozoa, Tabulata) is described from Upper Carboniferous strata of SW Nordenskiöld Land (Ingeborgfiellet), Bellsund area in West Spistbergen (Svalbard). The new species is characteristic for a phacelo-cerioid structure of entire corallum.
Septal neck-siphuncular complex has been redescribed In Triassic (Carnian) Stolleyites tenuis (Stolley). Ammonites whose septal necks change orientation from retrochoanitic through intermediate to prochoanitic may be divided into two categories: dorsoprogressive and ventroprogressive. In the former category, the initial changes in the direction of septal necks orientation occur dorsally; in the latter, the ventral side exhibits more progressive changes. Among forms with siphuncular complex adjacent to the ventral wall, i.e., without a septum between the neck and ventral wall in the medial plane, the changes towards prochoanitic septal neck may begin in the ventrolateral part. The circumsiphonal invagination in those forms did not include the ventral part and their proper interpretation cannot rely on the medial plane only. Primary lamination and primary fibrous structure of the siphuncular tube had been described, as well as the microstructure of the distal tip of cuff and auxiliary deposit.
Research in Hornsund (SW Spitsbergen) aimed to determine time distribution of heat flux in various soils of Arctic periglacial zone in spring and summer. Typical soils were analysed: tundra gleyey cryogenic soil (Pergelic Cryaquent), tundra peaty soil (Pergelic Histosot) and arctic desert soil (Pergelic Cryorthent). Research sites were located in low plains not covered with ice, near a sea, at 7—13 m a.s.l. Heat flux in soils was measured and recorded automatically every 60 s throughout a whole observation period and concurrently at three sites. In spring and summer intensive heat accumulation was observed in all examined soils. Independently on the weather, a cryogenic gleyey soil received greatest heat throughout a day. Environmental conditions have distinct influence on heat resources in soils.
On the basis of elemental composition, optical properties in the visible region, infrared spectra and thermal analysis (TG, DTG, DTA), humic acids of tundra soils in Spitsbergen are found to be more similar to fulvic acids than to humic acids of soils from other soil-climatic zones. The authors claim that it results from climatic conditions (low temperature, considerable humidity, alternation of freezing and thawing) and specific biochemical composition of tundra plants (predominance of plants devoid of lignin) which constitute substratum of the studied humic acids.
Przedstawiono wykaz nowych nazw geograficznych wprowadzonych na obszarze Wyspy Seymour (Marambio), Półwysep Antarktyczny (fig. 1, pl. 1—2) w czasie prac terenowych argentyńsko-polskiej grupy geologicznej w sezonie 1993-1994.
Editors-in-Chief
Magdalena BŁAŻEWICZ (Life Sciences), University of Łódź, Poland
e-mail:
magdalena.blazewicz@biol.uni.lodz.pl
Wojciech MAJEWSKI (Geosciences), Institute of Paleobiology PAS, Poland
e-mail:
wmaj@twarda.pan.pl
Michał ŁUSZCZUK (Social Science and Hummanities), UMCS, Poland
e-mail:
michal.luszczuk@poczta.umcs.lublin.pl
Associate Editors
Piotr JADWISZCZAK (Białystok),
e-mail: piotrj@uwb.edu.pl
Krzysztof JAŻDŻEWSKI (Łódź),
e-mail: krzysztof.jazdzewski@biol.uni.lodz.pl
Monika KĘDRA (Sopot)
e-mail: kedra@iopan.gda.pl
Ewa ŁUPIKASZA (Sosnowiec)
e-mail: ewa.lupikasza@us.edu.pl
Piotr PABIS (Łódź),
e-mail: cataclysta@wp.pl
Editorial Advisory Board
Angelika BRANDT (Hamburg),
Claude DE BROYER (Bruxelles),
Peter CONVEY (Cambridge, UK),
J. Alistair CRAME (Cambridge, UK),
Rodney M. FELDMANN (Kent, OH),
Jane E. FRANCIS (Cambridge, UK),
Andrzej GAŹDZICKI (Warszawa)
Aleksander GUTERCH (Warszawa),
Jacek JANIA (Sosnowiec),
Jiří KOMÁREK (Třeboň),
Wiesława KRAWCZYK (Sosnowiec),
German L. LEITCHENKOV (Sankt Petersburg),
Jerónimo LÓPEZ-MARTINEZ (Madrid),
Sergio A. MARENSSI (Buenos Aires),
Jerzy NAWROCKI (Warszawa),
Ryszard OCHYRA (Kraków),
Maria OLECH (Kraków)
Sandra PASSCHIER (Montclair, NJ),
Jan PAWŁOWSKI (Genève),
Gerhard SCHMIEDL (Hamburg),
Jacek SICIŃSKI (Łódź),
Michael STODDART (Hobart),
Witold SZCZUCIŃSKI (Poznań),
Andrzej TATUR (Warszawa),
Wim VADER (Tromsø),
Tony R. WALKER (Halifax, Nova Scotia),
Jan Marcin WĘSŁAWSKI (Sopot) - President.
Geosciences
Wojciech
MAJEWSKI
e-mail: wmaj@twarda.pan.pl
phone:
(48 22) 697 88 53
Instytut Paleobiologii PAN
ul. Twarda 51/55
00-818
Warszawa, POLAND
Life Sciences
Magdalena
BŁAŻEWICZ
e-mail: magdalena.blazewicz@biol.uni.lodz.pl
phone:
(48 22) 635 42 97
Zakład Biologii Polarnej i Oceanobiologii Uniwersytet Łódzki
ul.
S. Banacha 12/16
90-237 Łódź, POLAND