Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 2
items per page: 25 50 75
Sort by:

Abstract

Ultrasonic emulsifying processes of immiscible liquids can be used to obtain stable emulsions. The authors used an ultrasonic sandwich head with an energy concentrator to obtain a suitable value of the energy density necessary for the emerge of ultrasonic cavitation. Two piezoelectric ring (Dext = 50 mm) transducers of Pz-26 type produced by FERROPERM were used to design the ultrasonic sandwich head. The frequency of the ultrasonic wave was 18.4 kHz and the excitation time of the ultrasonic transducer exiting 5 minutes. Visible bubbles during the generation of ultrasonic waves appeared in the mixture after exceeding the cavitation threshold. The authors determined also the cavitation threshold by measuring the electrical voltage conducted to the transducers. To receive long-lasting emulsion, the electrical voltage attained 300 Vpeak. The dispersion dependence on the emulsifying time was determined. The emulsion of linseed oil and water was stable through some months without surfactants.
Go to article

Abstract

Ultrasonic processing in the cavitation mode is used to produce the composite materials based on the metal matrix and reinforcing particles of micro- and nano-sizes. In such a case, the deagglomeration of aggregates and the uniform distribution of particles are the expected effects. Although the particles can not only fragment in the acoustic field, they also can coagulate, coarsen and precipitate. In this paper, a theoretical study of processes of deagglomeration and coagulation of particles in the liquid metal under ultrasonic treatment is made. The influence of various parameters of ultrasound and dispersion medium on the dynamics of particles in the acoustic field is considered on the basis of the proposed mathematical model. The criterion of leading process (coagulation or deagglomeration) has been proposed. The calculated results are compared with the experimental ones known from the scientific literature.
Go to article

This page uses 'cookies'. Learn more