Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 15
items per page: 25 50 75
Sort by:

Abstract

Artemisinin is a powerful antimalarial drug, useful in the treatment of many diseases, includ- ing chickens coccidiosis. Its toxic effects have been well studied in humans and experimental animals, but not sufficiently in broiler chickens. Therefore, in the present study, we aimed to assess the side effects of artemisinin in chickens, by measuring the serum level of proteins and enzymes (ALT, AST, GGT, ALP, CK), by histopathological examination and by the evaluation of relative weight of organs (liver, kidney, heart). Artemisinin was administered in the standard feed for chickens in three different concentrations: 5, 50 and 500 ppm. Each concentration of artemisinin increased the total serum proteins, gamma-globulins and the serum activity of CK and decreased the serum ALP level. The values of ALT and GGT were higher in the chickens treated with 50 and 500 ppm of artemisinin. Multifocal liver necrosis and inflammatory infiltrate were detected in the chickens that received the 50 and 500 ppm dosage of artemisinin. Minimal tubular necrosis, renal tubular epithelium vacuolation, multifocal interstitial nephritis and mild uric nephrosis were detected in chickens treated with the drug. Artemisinin administration produced no significant changes in the organs relative weight. Artemisinin, at a concentration of 5 mg/kg of feed is well tolerated by broiler chickens, but the concentrations of 50 and 500 mg/ kg feed can produce toxic effects.
Go to article

Abstract

“Wartowice” tailings pond was closed in 1989, resulting in 232,4 ha tailings pile requiring reclamation. The major problem is heavy metals presence and poor nutrient conditions and physicochemical structure of soil which disturbs the plants development. In order to assess the real condition of studied area the complete biological characteristic has been done. The physicochemical conditions were assessed altogether with phytosociological, microbiological and toxicological studies of deposits. We recorded only 27 species of vascular plants belonging to 15 families on the tailings pond of which 5 belong to Rosaceae, 4 to Asteraceae and 3 to Poaceae and Saliceae. Species inhabiting the tailings depended on their dispersal capacity, metal tolerance and rhizome strategy. Microbiological analyses revealed the low number of bacteria and fungi on the tailings pond, apart from the small uplift area where the plants were indentified. Bacteria identified on the tailings pond were classified to 8 genera. The low number of bacteria suggests the lack of nutrients which affects the development of soil microflora. Toxicity tests showed that post-flotation sludge is not toxic to microorganisms because of its high pH. Some plants, such as lucerne could even influence positively the microorganisms development what has been proved in our studies. The tailings toxicity was higher towards producers, where Secale cereale appeared to be the most sensitive species. Amendment with topsoil from adjacent areas can influence positively the phytotoxic properties of tailings and enrich them into native seeds.
Go to article

Abstract

Nanotechnology has been widely applied in agriculture, and understanding of the mechanisms of plant interaction with nanoparticles (NPs) as environmental contaminants is important. The aim of this study was to determine the effects of foliar application of cobalt oxide (Co3O4) NPs on some morpho-physiological and biochemical changes of canola (Brassica napus L.) leaves. Seeds were sown in plastic pots and grown under controlled conditions. Fourteen-day-old seedlings were sprayed with different concentrations of Co3O4 NPs (0, 50, 100, 250, 500, 1000, 2000, and 4000 mg L-1) at weekly intervals for 5 weeks. Growth parameters of the shoot (length, fresh and dry weights) were stimulated by low concentrations of Co3O4 NPs (50 and 100 mg L-1) and repressed by higher concentrations. Similar trends were observed in photosynthetic pigment contents. The results indicated that high concentrations of Co3O4 NPs increased lipoxygenase (LOX) activity and the malondialdehyde (MDA), hydrogen peroxide (H2O2), and dehydroascorbate (DHA) contents, but reduced the membrane stability index (MSI), ascorbate (ASC), and glutathione (GSH). Despite the increase of antioxidant capacity (DPPH) and the accumulation of nonenzymatic antioxidants (total flavonoids and flavonols) and osmolytes (proline, glycine betaine (GB) and soluble sugars) at high concentrations of Co3O4 NPs, the growth and photosynthesis were reduced. The defence system activity did not seem to be sufficient to detoxify reactive oxygen species (ROS). Altogether, high concentrations of Co3O4 NPs showed a phytotoxic potential for canola as an oilseed crop.
Go to article

Abstract

The aim of this work was to determine the effect of various cadmium and copper concentrations on the activated sludge dehydrogenase activity. The investigations were carried out in six aerated chambers with activated sludge, volume of 1L each, by the continuous culture method (one control chamber, not contaminated with heavy metals and five with 0.5; 1; 2; 4; 8 mg L-1 Cu+2 and 0.1; 0.3; 0.9; 2.7; 8.1 mg L-1 Cd2+). Cadmium sulfate and copper sulfate as a source of heavy metals were used. The concentrations of these metal ions, causing 50% dehydrogenase activity inhibition were determined. The particular attention was paid to the toxic effect of metal ions, as well as the variations of the microbial respiration activity proceeded during toxins exposition. The investigation showed that even the lowest concentration of the investigated metal ions caused significant changes of the activated sludge dehydrogenases activity. Copper ions showed to be more toxic than cadmium ions.
Go to article

Abstract

In the paper toxicity assessment of hospital wastewaters samples was performed using direct-contact tests consisting of five species, which represent three different trophic levels of the food chain. IC50 or EC50 values were estimated for each tested organism: Pseudokirchneriella subcapitata IC50/72h 18.77%, Daphnia magna EC50/48h 20.76%, Thamnocephalus platyurus EC50/24h 22.62%, Artemia salina EC50/24h 59.87% and Vibrio fisheri EC50/15min 46.17%. Toxic potential of hospital wastewater was described using a system of wastewater toxicity classification. The toxic units (TU) values estimated for each test indicate that hospital wastewaters are toxic (Class III). The variable results of the tests’ sensitivity confirmed the need of application of microbiotests battery with organisms of different trophic levels.
Go to article

Abstract

The aim of this paper is to present characteristics, toxicity and environmental behavior of nanoparticles (NPs) (silver, copper, gold, zinc oxide, titanium dioxide, iron oxide) that most frequently occur in consumer products. In addition, NPs are addressed as the new aquatic environmental pollutant of the 21st century. NPs are adsorbed onto particles in the aquatic systems (clay minerals, fulvic and humic acids), or they can adsorb environmental pollutants (heavy metal ions, organic compounds). Nanosilver (nAg) is released from consumer products into the aquatic environment. It can threaten aquatic organisms with high toxicity. Interestingly, copper nanoparticles (Cu-NPs) demonstrate higher toxicity to bacteria and aquatic microorganisms than those of nanosilver nAg. Their small size and reactivity can cause penetration into the tissues and interfere with the metabolic systems of living organisms and bacterial biogeochemical cycles. The behavior of NPs is not fully recognized. Nevertheless, it is known that NPs can agglomerate, bind with ions (chlorides, sulphates, phosphates) or organic compounds. They can also be bound or immobilized by slurry. The NPs behavior depends on process conditions, i.e. pH, ionic strength, temperature and presence of other chemical compounds. It is unknown how NPs behave in the aquatic environment. Therefore, the research on this problem should be carried out under different process conditions. As for the toxicity, it is important to understand where the differences in the research results come from. As NPs have an impact on not only aquatic organisms but also human health and life, it is necessary to recognize their toxic doses and know standards/regulations that determine the permissible concentrations of NPs in the environment.
Go to article

Abstract

Current study was designed to investigate the protective effects of royal jelly on Flunixin me- glumine (FM)-induced spermiotoxicity related to sperm concentration, abnormal spermatozoa count and histopathological changes in mice testis. The subjects were divided into five groups according to FM and/or royal jelly intake: Control group; group 1, FM alone (25 mg/kg, im); group 2, combination of FM (25 mg/kg, im) and royal jelly (200 mg/kg, oral); group 3, FM alone (50 mg/kg, im); and group 4, combination of FM (50 mg/kg, im) and royal jelly (200 mg/kg, oral). The animals were fed once daily for 15 days and they were sacrificed last day. Epididymal sperm concentration and abnormal spermatozoa count were noted. Testicular histological findings were evaluated. On purpose, organization of each animal was graded according to Johnsen’s scoring to assess the spermatogenesis relying on seminiferous tubule cross-section scores. Comparing to controls, FM administration caused a decrease in sperm concentration (p<0.05), an increase in total abnormal spermatozoa rates (p<0.05) and more degenerative changes in testes in mice. Royal jelly supplementation ameliorated both sperm concentration and abnormal spermato- zoa (p<0.05) comparing to the control group. In conclusion, we suggested that royal jelly might have protective effects in the FM-induced reductions in epididymal sperm concentration and in- crease in abnormal spermatozoa rate.
Go to article

Abstract

Aphids are one of the most important economic pests and vectors of viral diseases in crops. Brevicoryne brassicae L., one of the most serious aphid pests in Brassicaceae, if not controlled, often reaches very high densities. The present study compared the systemic effects of ethanolic, methanolic and aqueous Melia azedarach L., Peganum harmala L., Calendula officinalis L. and Otostegia persica Boissier extracts with two systemic pesticides, acetamiprid and pirimicarb (at the maximum label-recommended rate). Population growth percentages of B. brassicae through leaf spraying under greenhouse conditions were assessed. The chemicals were sprayed on one of the leaves in greenhouse condition. The results indicated that all the plant extracts have systemic effects at different levels. Among different extracts, O. persica ethanolic extract, P. harmala methanolic extract and M. azedarach aqueous extract resulted in a reduction of the B. brassicae population.
Go to article

Abstract

The research aimed to use chemical, geochemical, and ecotoxicity indices to assess the heavy metals content in soils with different degrees of exposure to human pressure. The research was conducted in southern Poland, in the Malopolska (Little Poland) province. All metal contents exceeded geochemical background levels. The highest values of the Igeo index were found for cadmium and were 10.05 (grasslands), 9.31 (forest), and 5.54 (arable lands), indicating extreme soil pollution (class 6) with this metal. Mean integrated pollution index (IPI) values, depending on the kind of use, amounted to 3.4 for arable lands, 4.9 for forests, and 6.6 for grasslands. These values are indicative of a high level of soil pollution in arable lands and an extremely high level of soil pollution in grasslands and forests. Depending on the type of soil use, Vibrio fischeri luminescence inhibition was from -33 to 59% (arable lands), from -48 to 78% (grasslands), and from 0 to 88% (forest). Significantly the highest toxicity was found in soils collected from forest grounds.
Go to article

Abstract

The prevalence of heavy metals in wastewater is the cause of death of numerous organisms which take part in biological treatment of wastewater, that is why the aim of the study has been to asses the influence of cadmium and copper ions upon the microfauna of activated sludge. 5, 10, 50, and 100 mg/l of Cd2+ and Cu2+ were added into the samples of activated sludge and then, after 24 hours, the microscopic observations of activated sludge microfauna were carried out, and all changes concerning the amount of microfauna, functional groups, and species composition were determined. The results obtained allowed to find a high level of toxicity of Cd2+ and Cu2+ ions to activated sludge microfauna, which resulted in the changes in the value of the Sludge Biotic Index and classes of sludge, survivability of microfauna, and reduction in the number of taxonomic units. It was observed that Cu2+ ions are more toxic to activated sludge microfauna than Cd2+ ions in identical doses. Organisms sensitive to Cd2+ and Cu2+ ions have been found to be testate amoebae, Aspidisca sp. and Epistylis sp., as well as organisms relatively sensitive to tested metals, which turned out to be ciliates of Opercularia and Vorticella convalaria genera.
Go to article

Abstract

The paper deals with the problem of the determination of the effects of temperature on the efficiency of the nitrification process of industrial wastewater, as well as its toxicity to the test organisms. The study on nitrification efficiency was performed using wastewater from one of Polish chemical factories. The chemical factory produces nitrogen fertilizers and various chemicals. The investigated wastewater was taken from the influent to the industrial mechanical-biological wastewater treatment plant (WWTP). The WWTP guaranteed high removal efficiency of organic compounds defined as chemical oxygen demand (COD) but periodical failure of nitrification performance was noted in last years of the WWTP operation. The research aim was to establish the cause of recurring failures of nitrification process in the above mentioned WWTP. The tested wastewater was not acutely toxic to activated sludge microorganisms. However, the wastewater was genotoxic to activated sludge microorganisms and the genotoxicity was greater in winter than in spring time. Analysis of almost 3 years’ period of the WWTP operation data and laboratory batch tests showed that activated sludge from the WWTP under study is very sensitive to temperature changes and the nitrification efficiency collapses rapidly under 16°C. Additionally, it was calculated that in order to provide the stable nitrification, in winter period the sludge age (SRT) in the WWTP should be higher than 35 days.
Go to article

Abstract

The aim of this study was to assess the effects of two flocculants that are often used to overcome activated sludge bulking problems - aluminium chloride, AlCl3, and aluminium sulphate, Al2(SO4)3 - on Lecaneinermis (Rotifera, Monogononta) at three different temperatures: 8, 15 and 20°C. The mean EC50 value (effective concentration, mg dm-3) calculated for the 24 h mortality test was 0.012 mg Al3+dm-3. Next, the effects of low concentrations of the Al-salts on the population development from single individuals (parthenogenetic females) were tested in a 21-day experiment. At concentrations as low as EC4.8 and EC0.48, both Al-salts affected rotifer population negatively. However, temperature was the most pronounced factor that modified the toxicity of the Al-salts to the rotifers. On the 12th day of the experiment, there were significant interactions between temperature and the Al-salts, indicating that the chemicals were more toxic to the rotifers at 20°C than at lower temperatures. The weaker rotifers sensitivity to Al-salts (especially to AlCl3) in temperatures below 15°C, when the biggest problems associated with sludge bulking occurs,may means use both rotifers and chemicals reasonable and effective.
Go to article

Abstract

Thirteen fractions of ambient dust were investigated in Zabrze, a typical urban area in the central part of Upper Silesia (Poland), during a heating season. Fifteen PAH and Cr, Mn, Co, Ni, As, Se, Cd, Pb contents of each fraction were determined. The dust was sampled with use of a cascade impactor and chemically analyzed with an energy dispersive X-ray fluorescence spectrometer (PANalytical Epsilon 5) and a gas chromatograph with a flame ionisation detector (Perkin Elmer Clarus 500). The concentrations of PM1 and the PM1-related PAH and elements were much higher than the ones of the coarse dust (PM2.5-10) and the substances contained in it. The concentrations of total PAH and carcinogenic PAH were very high (the concentrations of PM1-, PM2.5-, and PM10-related BaP were 16.08, 19.19, 19.32 ng m-3, respectively). The municipal emission, resulted mainly from hard coal combustion processes, appeared to be the main factor affecting the air quality in Zabrze in winter.
Go to article

This page uses 'cookies'. Learn more