Search results

Filters

  • Journals
  • Keywords
  • Date

Search results

Number of results: 7
items per page: 25 50 75
Sort by:

Abstract

The paper presents the statical research tests of rod bolt made of plastic with a length of 5.5 m, which were performed in a modern laboratory test facility at the Department of Underground Mining of the University of Science and Technology. Innovative The Self-excited Acoustic System (SAS) used to measure stress changes in the bolt support was characterized. The system can be used for the non-destructive evaluation of the strain of the bolt around the excavations as well as in tunnels. The aim of the study was to compare the re-sults recorded by two different measuring systems, thanks to which it will be possible to assess the load of long bolt support by means of the non-destructive method. The speed and simplicity of measurement, access to the sensors, accuracy of measurement and reading should be kept in mind in determining the load of rock bolt support . In addition, the possibility of damage to the sensor as a re-sult of technological or natural hazards should also be taken into account. In economic conditions, the „technical - balance laws of production”, which ex-cludes the use of load sensors on each bolt must be preserved. The use of indi-vidual load sensors of rock bolt support for the boundary state, allows appro-priate protection actions of the mining crew against sudden loss of excavation stability to be taken. The paper presents two basic effects used in the ultrasonic measurement sys-tem. The first result was the existence of stable limit cycle oscillations for posi-tive feedback. This effect is called the self-excited effect. The second effect is called the elasto-acoustic effect. It means that with the change of elastic stress-es in the material bring the change of the speed of propagation of the wave. In this connection, the propagation time between measuring heads is also changed. This effect manifests itself in the change in the oscillation frequency of the self-excited system. For this reason, by measuring the frequency of self-excited oscillation, it is possible to indirectly determine the level of effort of the tested material.
Go to article

Abstract

Work is being carried out on possibilities of limiting the content of mercury in hard coal products by gravity concentration of run-of-mine coal in the Branch of the Institute of Mechanized Construction and Rock Mining in Katowice and on the Faculty of Energy and Fuels of the AGH University of Science and Technology in Krakow. Under domestic industrial conditions, gravity concentration is carried out with heavy medium liquids and in jigs. Preliminary - pilot studies have shown the possibility of mercury removal also by using the dry deshaling method involving vibratory air separators. Mercury is mainly found in the pyrite and the rubble formed by the mineral carbon, but also in the organic carbon. Some of it is located in layers of coal roof fields, which in the course of their exploitation go to coal. The mercury removal efficiency during the gravity concentration process will depend on the decomposition of the listed components in the density fractions. The paper presents the results of investigations of total mercury and total sulphur content in the separated coal fractions from four mines. These contents were determined in fractions: –1.5 g/cm3 (conventionally clean coal – concentrate), 1.5–1.8 g/cm3 (conventionally middlings) and +1.8 g/cm3 (conventionally rock – waste). The results are summarized in Tables 3–5 and in Charts 1–4. Conversely, graphs 5-8 show the relationship between mercury content and total sulphur content in the tested coal samples. The study, which can be called a preliminary analysis of the susceptibility of the coals to gravity concentration, showed that the dry deshaling method on the vibratory air separators would allow significant amounts of mercury accumulated in the middlings and waste fractions to be removed.
Go to article

Abstract

GNSS systems are susceptible to radio interference despite then operating in a spread spectrum. The commerce jammers power up to 2 watts that can block the receiver function at a distance of up to 15 kilometers in free space. Two original methods for GNSS receiver testing were developed. The first method is based on the usage of a GNSS simulator for generation of the satellite signals and a vector signal RF generator for generating different types of interference signals. The second software radio method is based on a software GNSS simulator and a signal processing in Matlab. The receivers were tested for narrowband CW interference, FM modulated signal and chirp jamming signals and scenarios. The signal to noise ratio usually drops down to 27 dBc-Hz while the jamming to signal ratio is different for different types of interference. The chirp signal is very effective. The jammer signal is well propagated in free space while in the real mobile urban and suburban environment it is usually strongly attenuated.
Go to article

Abstract

The article presents tests results of the influence of deformation methods on the microstructure and properties of alloy WE43. There were direct extrusion tests and extrusion with KoBo method performed. An assessment of the influence of the methods of deformation on the microstructure and the mechanical properties of the achieved rods from alloy WE43 was conducted. There was an analysis of microstructure carried out with the use of light and scanning microscopy techniques in the initial state and after plastic deformation. Static tensile test was conducted in temperature of 350°C at a speed of 0.0001 m·s–1 and microhardness measurements were performed of HV0.2. On the basis of the achieved mechanical tests results it was stated that in the temperature of 350°C for samples deformed with the use of KoBo method there was an effect of superplastic flow found. The value of elongation achieved was 250% which was 3 times higher than in case of classic extrusion (80%).
Go to article

Abstract

The Histogram Test method is a popular technique in analog-to-digital converter (ADC) testing. The presence of additive noise in the test setup or in the ADC itself can potentially affect the accuracy of the test results. In this study, we demonstrate that additive noise causes a bias in the terminal based estimation of the gain but not in the estimation of the offset. The estimation error is determined analytically as a function of the sinusoidal stimulus signal amplitude and the noise standard deviation. We derive an exact but computationally difficult expression as well as a simpler closed form approximation that provides an upper bound of the bias of the terminal based gain. The estimators are validated numerically using a Monte Carlo procedure with simulated and experimental data.
Go to article

Abstract

The paper contains the results of the initial surface treatment influence on the properties of the medical Ti-6Al-7Nb alloy with a modified zirconium oxide layer deposited on its surface by sol-gel method. In the paper, the analysis of results of potentiodynamic studies is presented as well as its resistance to pitting corrosion and electrochemical impedance spectroscopy (EIS), macroscopic observation of the surface of samples and analysis of geometrical structure with the use Atomic Force Microscope (AFM) were performed. The studies were performed on two groups of samples depending on the graduation of the sand used in sandblasted process – 50 μm and 250 μm. Based on the obtained results it can be concluded that the type of the initial surface treatment preceding the surface modification of the Ti-6Al-7Nb has a significant effect on its properties.
Go to article

Abstract

The article presents tests results of metalforming of magnesium alloy AZ61. Materials for tests were ingots sized  40×90 mm from magnesium alloy marked with symbol AZ61. Before the shaping process the ingots underwent heat treatment. As a result of conduction of the deformation processes there were rods achieved with diameter of 8 mm. There were axisymmetrical compression tests conducted on the samples taken from rods in temperature range from RT to 350ºC in order to determine the plasticity and formability of the alloy AZ61. Static tensile test was conducted in room temperature (RT), in 300ºC and in 350ºC. With the use of light and electron microscopy techniques the changes which occurred in the microstructure of AZ61alloy in initial condition and after plastic deformation (classic extrusion, KoBo method extrusion) were described. The deformation of alloy AZ61 using the KoBo method contributes to an increase in strength and plastic properties. The effect of superplastic flow was found at a temperature of 350ºC, where a 300% increase in plastic properties – elongation value was obtained. The analysis of the microstructure showed a significant grain size reduction in the microstructure of alloy AZ61 after deformation by the KoBo method and after an axisymmetric compression test, where grains of an average diameter of d = 13 µm were obtained.
Go to article

This page uses 'cookies'. Learn more