Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 2
items per page: 25 50 75
Sort by:

Abstract

Main aim of this study is to combine the characteristics of the sonic crystal (SC) with acoustic panels and porous materials to improve the sound transmission loss (STL) through the triple-panel structure. SCs cause a bandgap centered around a certain frequency (Bragg’s frequency) due to generation of destructive interference. Initially, an analytical method is developed that extends the previous theory of double-panel structure to predict STL through a triple-panel structure. Finite element (FE) simulations are performed to obtain the STL through the triple-panel, which are validated with the analytical predictions. Various configurations are analyzed using the FE method based on the method of inserting the porous material and SCs between the panels to address the combined effect. STL through the triple-panel structure is compared with that through the double-panel structure having the same total weight and total thickness. It is found that the combined structure of the triple panel and the SC with glass wool as filler gives the best soundproof performance for the same external dimensions. For narrow air gaps, filing with glass wool is more advantageous than inserting one row of SC. In addition, the triple panel combined with a SC has better soundproofing than the two-panel counterparts.
Go to article

Abstract

A sonic crystal consists of a finite-size periodic array of scatters embedded in a background material. One of the fascinating properties of sonic crystals is the focusing phenomenon. In this study, the near field focusing effect of a solid-air 2D sonic crystal lens with a square lattice configuration is investigated in the second frequency band. The band structure and equifrequency contour of the crystal are analyzed to reveal the dispersion of an acoustic wave on the crystal structure. The frequency dependence of the acoustic wave focalization by the sonic crystal flat lens is demonstrated via Finite Difference Time Domain simulation results and experimental measurements.
Go to article

This page uses 'cookies'. Learn more