Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 35
items per page: 25 50 75
Sort by:
Keywords de-NOx ozone mixing

Abstract

The influence of ozone injection mode on the effectiveness of nitrogen monoxide oxidation to nitrogen dioxide by ozone in a flow reactor was investigated experimentally in laboratory apparatus. Nitrogen monoxide was diluted to the mole fraction 100 ppm in air which served as the carrier gas flowing through the tube of the diameter D = 60 mm into which ozone was injected. The effects of a number of ozone injecting nozzles and their configuration on the effectiveness of NO oxidation were examined. In the closest vicinity from the injection site the counter-current injection mode appeared to be superior to the co-current injection mode, but in areas located further from the injection site both injection systems were almost equally effective.
Go to article

Abstract

The paper presents the impact of carrageenan addition on rheological characterisation of some hydrocolloid aqueous solutions during stirring with rotational speed changes. Carboxymethyl cellulose, guar gum and xanthan gum were used. Measurements were conducted in a vessel equipped with an anchor stirrer under rotational speed increase and decrease conditions, equivalent to a hysteresis loop rheological test. Rheological parameters were calculated using the power-law equation. It was found that a carrageenan addition generally causes a reduction of liquid apparent viscosity and time-dependent rheological behaviour intensification, with some exceptions.
Go to article

Abstract

The aim of the study was to present an experimental investigation of the influence of the RMF on mixing time. The obtained results suggest that the homogenization time for the tested experimental set-up depending on the frequency of the RMF can be worked out by means of the relationship between the dimensionless mixing time number and the Reynolds number. It was shown that the magnetic field can be applied successfully to mixing liquids.
Go to article

Abstract

Coal in Poland is an available conventional fuel providing energy security and independence of the country. Therefore, conventional energy generation should be based on coal with the optimal development of renewable energy sources. Such a solution secures the energy supply based on coal and the independence of political and economic turmoil of global markets. Polish coal reserves can secure the energy supply for decades. Coal will surely be important for energy security in the future despite the growing share of oil and gas in energy mix. The development of renewable power generation will be possible with the conventional energy generation offsetting volatile renewable power generation as Poland’s climate doesn’t allow for the stable and effective use of renewable energy sources. Considering the policy of the European Union with respect to emission reductions of greenhouse gasses and general trends as reflected in the Paris agreement in 2016, as a country we will be forced to increase renewable energy production in our energy mix. However, this process cannot impact the energy security of the country and stability and the uninterrupted supply of energy to consumers. Therefore seeking the compromise with the current energy mix in Poland is the best way to its gradual change with the simultaneous conservation of each of the sources of energy. It’s obvious that Poland can not be lonely energy island in Europe and in the world, which increasingly develops distributed energy and/ renewable technologies as well as energy storage ones. One can notice that without renewable generation and the reduction of coal’s share in country’s energy mix we will become the importer of electricity with raising energy dependence.
Go to article

Abstract

Obtaining a pure product by mixing together raw materials, so as to carry out a chemical reaction at high selectivity, is a difficult part of manufacturing chemical products. How can we test reactors and mixers to ensure the efficient use of energy?
Go to article

Abstract

The progressive processes of globalization and changes in the global, European and local economy require integrated efforts aimed at solving problems related to development at the national regional and the local level involving the environment, energy sources, climate and technological transformation issues. European Union Member States are given right to create an individual Energy mix. Coal will continue to play a major role in Poland’s energy mix during the next decades. Polish coal reserves can provide energy security for decades. Despite crude oil and natural gas growth in fuel consumption, coal will continue to be the stabilizer of energy security for the country and play an important role in Poland’s energy mix in the years to come. However, further coal consumption requires investments in low carbon technologies which are of high efficiency and in high-efficiency cogeneration. The validity of the full utilization of cogeneration potential should be highlighted. Operating cogeneration plants are more expensive than power plants but they are more efficient and generate less carbon emissions. In accordance with the assumptions of the Energy policy of Poland, a low-carbon economy with renewable Energy sources and nuclear Energy should be supported and developed, however the obsolete coal generators should be replaced with low-carbon high-efficient ones.
Go to article

Abstract

In this study the formation of the polygenetic High Tatra granitoid magma is discussed. Felsic and mafic magma mixing and mingling processes occurred in all magma batches composing the pluton and are documented by the typical textural assemblages, which include: mafic microgranular enclaves (MME), mafic clots, felsic clots, quartz-plagioclase-titanite ocelli, biotite-quartz ocelli, poikilitic plagioclase crystals, chemically zoned K-feldspar phenocrysts with inclusion zones and calcic spikes in zoned plagioclase. Geochemical modelling indicates the predominance of the felsic component in subsequent magma batches, however, the mantle origin of the admixed magma input is suggested on the basis of geochemical and Rb-Sr, Sm-Nd and Pb isotopic data. Magma mixing is considered to be a first-order magmatic process, causing the magma diversification. The cumulate formation and the squeezing of remnant melt by filter pressing points to fractional crystallization acting as a second-order magmatic process.
Go to article

Abstract

The future and the development of power industry are the one of the major issues in the domestic and global policy. The impact of the power sector on the earth climate changes and the attention for sufficient funds of energy in the following years are the primary challenges which the power industry is facing. The article delineates the current state of the domestic sector of energy production. In the prospect of the next few years, it will draw on conventional power engineering nevertheless, with the growing involvement of renewable energy sources. However, it is important to develop the new energy strategy, which will point the direction of domestic energy production sector changes. What is more relevant, the new legal regulations connected with environmental protection will definitely restrict using fossil fuels in the power industry. In addition, the paper discusses the most important aspects involved in creating a country’s energy mix. The first aspect is the current state of the energy sector in Poland, i.e. the percentage of particular technologies in the present power and electrical energy balances, the technical state of the manufacturing sector’s infrastructure. Based on historical data of Polskie Sieci Elektroenergetyczne SA regarding the energy consumption and demand, a mathematical estimation for electricity demand and its consumption forecast was performed. The obtained forecasts were then used to conduct a simulation of power and energy demand fulfillment in the national power system. Finally, several possible scenarios were presented, taking different factors affecting the energy sector in Poland into consideration.
Go to article

Abstract

Two systems of hydraulic mixing in a vertical cylindrical anaerobic digester: standard and modernised are discussed in the paper. Numerical investigations that were carried out are focused on a study of hydrodynamic processes in an aerobic digester using two various systems of hydraulic mixing as well as on analysis of the efficiency of methane fermentation process accomplished under different geometric parameters of an anaerobic digester and systems of hydraulic mixing.
Go to article

Abstract

The drainage consolidation method has been efficiently used to deal with soft ground improvement. Nowadays, it has been suggested to use a new sand soil which is a composite of sand and recycled glass waste. The permeability performance of glass-sand soil was explored to judge the feasibility of glass-sand soil backfilled in the drainage consolidation of sand-drained ground. For comparison purposes, different mix proportions of recycled glass waste, fineness modulus, and glass particle size were analyzed to certify the impact on the permeability coefficient and the degree of consolidation. The numerical results show that adding a proper amount of recycled glass waste could promote the permeability performance of glass-sand soil, and the glasssand soil drain could be consolidated more quickly than a sand drain. Experiments showed that glass-sand soil with the a 20% mix of recycled glass waste reveals the optimum performance of permeability.
Go to article

Abstract

This paper analyses the real behaviour of the fluid in the channels of a three-end membrane module. The commonly accepted mathematical model of membrane separation of gas mixtures in such modules assumes a plug flow of fluid through the feed channel and perfect mixing in the permeate channel. This article discusses the admissibility of accepting such an assumption regarding the fluid behaviour in the permeate channel. Throughout analysis of the values of the Péclet number criterion, it has been demonstrated that in the industrial processes of membrane gas separation, the necessary conditions for the perfect mixing in the permeate channel are not met. Then, CFD simulations were performed in order to establish the real fluid behaviour in this channel. It was proved that in the permeate channel the fluid movement corresponds to the plug flow, with the concentration differences at both ends of the module being insignificant. In view of the observations made, the admissibility of concentration stability assumptions in the mathematical models for the permeate channel was discussed.
Go to article

Abstract

Geometric parameters of a ribbon impeller were optimized on the basis of numerical calculations obtained from the solution of our own 3D/2D hybrid model. The optimization was made taking into account mixing power and homogenization time for ribbon impellers with a different number of ribbons and width operating in a laminar motion for Newtonian fluid. Due to minimum mixing energy required to stir a unit volume of liquid the most efficient impeller appeared to be that with one ribbon of width equal to 0.1 to 0.15 of the mixing vessel diameter. Impellers with more than one ribbon needed much higher mixing power but did not increase significantly secondary circulation in the vessel. These impellers increased first of all primary circulation, i.e. they increased only circular motion of liquid in the vessel.
Go to article

Abstract

The work presents a comparison of some sound attributes perceived at a multichannel and stereo playback of musical recordings. The width of the virtual source, coherence impression, total size of sound scene, general quality and balance were the subjects of interest after the format reduction in accordance with the ITU recommendation. The results showed that evaluation of these attributes depends on the way the original audiosphere has been created in the surround system, for example, for a narrow virtual source the mix-down process causes only a small change in its size but for a broad source the observed degradation is significant. In addition, different ways of conversion from the multichannel to stereo format have been tested for compatibility.
Go to article

Abstract

Simulations of turbulent mixing in two types of jet mixers were carried out using two CFD models, large eddy simulation and κ-ε model. Modelling approaches were compared with experimental data obtained by the application of particle image velocimetry and planar laser-induced fluorescence methods. Measured local microstructures of fluid velocity and inert tracer concentration can be used for direct validation of numerical simulations. Presented results show that for higher tested values of jet Reynolds number both models are in good agreement with the experiments. Differences between models were observed for lower Reynolds numbers when the effects of large scale inhomogeneity are important.
Go to article

Abstract

The article presents the use of computer graphics methods and computational geometry for the analysis on changes of geometrical parameters for a mixed zone in resistance-heated samples. To perform the physical simulation series of resistance heating process, the Gleeble 3800 physical simulator, located in the Institute for Ferrous Metallurgy in Gliwice, was used. The paper presents a description of the test stand and the method for performing the experiment. The numerical model is based on the Fourier-Kirchoff differential equation for unsteady heat flow with an internal volumetric heat source. In the case of direct heating of the sample, geometrical parameters of the remelting zone change rapidly. The described methodology of using shape descriptors to characterise the studied zone during the process allows to parametrise the heat influence zones. The shape descriptors were used for the chosen for characteristic timing steps of the simulation, which allowed the authors to describe the changes of the studied parameters as a function of temperature. Additionally, to determine the impact of external factors, the remelting zone parameters were estimated for two types of grips holding the sample, so-called hot grips of a shorter contact area with the sample, and so-called cold grips. Based on the collected data, conclusions were drawn on the impact of the process parameters on the localisation and shape of the mushy zone.
Go to article

Abstract

In 2008, the European Union adopted the climate and energy package. It foresees the three most important goals to achieve by 2020 in the field of energy: 20% reduction in greenhouse gas emissions, 20% share of energy from renewable sources in total energy consumption in the EU, 20% increase in EU energy efficiency. Therefore, individual countries were obliged to move away from fossil fuels for renewable energy production. Depending on the capabilities of each country and the development of renewable energy, various goals have been set for individual countries. For Poland, the share of RES energy in total energy consumption has been set at 15% (Directive 2009). The Polish energy policy until 2030 includes state strategies in the field of implementation of tasks and objectives in the area of energy resulting from the need to build national security and EU regulation. The challenges of the current national energy industry include increasing demand for energy and implementation of international commitments in the area of environmental and climate protection (Policy 2009). Contemporary domestic energy is characterized by a high share of fossil fuels, mainly coal, in the production of electricity and heat, and the different share of RES energy in individual technologies and energy sectors. Poland has significant natural resources, which are a source of biomass for energy purposes. Large energy units dominate in the national consumption of biomass while the share of heating plants is still insignificant (Olsztyńska 2018). The aim of the article is to analyze, based on available data and own observations of the author, the share of biomass in the national energy and heat, as well as defining factors affecting the level of biomass use in the area of Polish power industry.
Go to article

Abstract

In this work a concept of energetic efficiency of mixing is presented and discussed; a classical definition of mixing efficiency is modified to include effects of the Schmidt number and the Reynolds number. Generalization to turbulent flows is presented as well. It is shown how the energetic efficiency of mixing as well as efficiencies of drop breakage and mass transfer in twophase liquid-liquid systems can be identified using mathematical models and test chemical reactions. New expressions for analyzing efficiency problem are applied to identify the energetic efficiency of mixing in a stirred tank, a rotor stator mixer and a microreactor. Published experimental data and new results obtained using new systems of test reactions are applied. It has been shown that the efficiency of mixing is small in popular types of reactors and mixers and thus there is some space for improvement.
Go to article

Abstract

Mixing of granular materials is unquestionably important. Mixing solids is common in industrial applications and frequently represents a critical stage of the processes. The effect of mixing determines the quality of the products. Achieving a gas or liquid mixture ideally homogeneous in terms of composition in the case of dissolving components is not that difficult, while in case of granular materials that usually differ in sizes and densities, obtaining a homogenous mixture is practically impossible. The aim of the paper is to present the kinetics of mixing of a multicomponent, nonhomogeneous granular mixture. For the first time in mixing of granular materials, a reference has been made to the terminology used in kinematics of fluid mixtures to determine the state of the mixture: turbulent or laminar. By means of statistical analysis the mixing process was divided into two stages. The initial phase of the process was called the stage of turbulent changes, due to large differences in the quality of the observed mixtures; the final step of the process was called the stage of laminar, stable changes, where further mixing did not result in a significant improvement in quality. The research was conducted in industrial conditions in a two-tonne mixer.
Go to article

Abstract

The main aim of this work is to study the thermal efficiency of a new type of a static mixer and to analyse the flow and temperature patterns and heat transfer efficiency. The measurements were carried out for the static mixer equipped with a new mixing insert. The heat transfer enhancement was determined by measuring the temperature profiles on each side of the heating pipe as well as the temperature field inside the static mixer. All experiments were carried out with varying operating parameters for four liquids: water, glycerol, transformer oil and an aqueous solution of molasses. Numerical CFD simulations were carried out using the two-equation turbulence k-ω model, provided by ANSYS Workbench 14.5 software. The proposed CFD model was validated by comparing the predicted numerical results against experimental thermal database obtained from the investigations. Local and global convective heat transfer coefficients and Nusselt numbers were detrmined. The relationship between heat transfer process and hydrodynamics in the static mixer was also presented. Moreover, a comparison of the thermal performance between the tested static mixer and a conventional empty tube was carried out. The relative enhancement of heat transfer was characterised by the rate of relative heat transfer intensification.
Go to article

Abstract

One of the important parameters describing pneumatic liquid atomisation is the air to liquid mass ratio (ALR). Along with the atomiser design and properties of the liquid it has extremely important influence on parameters of atomised liquid such as: mean droplet diameter, jet range and angle. Knowledge about real characteristics of an atomiser in this respect is necessary to correctly choose its operating parameters in industrial applications. The paper presents results of experimental research of two-fluid atomisers with internal mixing built according to custom design. Investigated atomizers were designed for spraying a urea aqueous solution inside the power boiler combustion chamber. They are an important element of SNCR (selective non-catalytic reduction) installation which is used to reduce nitrogen oxides in a flue gas boiler. Obtained results were used by authors in further research, among others to determine the boundary conditions in the SNCR installation modeling. The research included determining mean droplet diameter as a function of ALR. It has been based on the immersion liquid method and on the use of specialised instrumentation for determining distribution of droplet diameters in a spray – Spraytec by Malvern. Results obtained with both methods were later compared. The measurements were performed at a laboratory stand located at the Institute of Heat Engineering, Warsaw University of Technology. The stand enables extensive investigation of the water atomisation process.
Go to article

Abstract

Knowledge of the fluid dynamic characteristics in a stirred vessel is essential for reliable design and scale-up of a mixing system. In this paper, 3D hydrodynamics in a vessel agitated by a Rushton turbine were numerically studied (with the help of a CFD computer program (CFX 13.0)). The study was carried out covering a wide Reynolds number range: 104 - 105. Computations, based on control volume method, were made using the k-ε model. Our main purpose was to investigate the effect of vessel configuration and agitation rates on the flow structure and power consumption. Three types of vessels were used: unbaffled, baffled and a vessel with slots placed at the external perimeter of its vertical wall. The effect of slot length has been investigated. The comparison of our predicted results with available experimental data shows a satisfactory agreement.
Go to article

Abstract

The main topic of this study is the experimental measurement and mathematical modelling of global gas hold-up and bubble size distribution in an aerated stirred vessel using the population balance method. The air-water system consisted of a mixing tank of diameter T = 0.29 m, which was equipped with a six-bladed Rushton turbine. Calculations were performed with CFD software CFX 14.5. Turbulent quantities were predicted using the standard k-ε turbulence model. Coalescence and breakup of bubbles were modelled using the homogeneous MUSIG method with 24 bubble size groups. To achieve a better prediction of the turbulent quantities, simulations were performed with much finer meshes than those that have been adopted so far for bubble size distribution modelling. Several different drag coefficient correlations were implemented in the solver, and their influence on the results was studied. Turbulent drag correction to reduce the bubble slip velocity proved to be essential to achieve agreement of the simulated gas distribution with experiments. To model the disintegration of bubbles, the widely adopted breakup model by Luo & Svendsen was used. However, its applicability was questioned.
Go to article

Abstract

The main topic of this study is the mathematical modelling of bubble size distributions in an aerated stirred tank using the population balance method. The air-water system consisted of a fully baffled vessel with a diameter of 0.29 m, which was equipped with a six-bladed Rushton turbine. The secondary phase was introduced through a ring sparger situated under the impeller. Calculations were performed with the CFD software CFX 14.5. The turbulent quantities were predicted using the standard k-ε turbulence model. Coalescence and breakup of bubbles were modelled using the MUSIG method with 24 bubble size groups. For the bubble size distribution modelling, the breakup model by Luo and Svendsen (1996) typically has been used in the past. However, this breakup model was thoroughly reviewed and its practical applicability was questioned. Therefore, three different breakup models by Martínez-Bazán et al. (1999a, b), Lehr et al. (2002) and Alopaeus et al. (2002) were implemented in the CFD solver and applied to the system. The resulting Sauter mean diameters and local bubble size distributions were compared with experimental data.
Go to article

Abstract

The numerical investigation of the mixing process in complex geometry micromixers, as a function of various inlet conditions and various micromixer vibrations, was performed. The examined devices were two-dimensional (2D) and three-dimensional (3D) types of serpentine micromixers with two inlets. Entering fluids were perturbed with a wide range of the frequency (0 - 50 Hz) of pulsations. Additionally, mixing fluids also entered in the same or opposite phase of pulsations. The performed numerical calculations were 3D to capture the proximity of all the walls, which has a substantial influence on microchannel flow. The geometry of the 3D type serpentine micromixer corresponded to the physically existing device, characterised by excellent mixing properties but also a challenging production process (Malecha et al., 2009). It was shown that low-frequency perturbations could improve the average mixing efficiency of the 2D micromixer by only about 2% and additionally led to a disadvantageously non-uniform mixture quality in time. It was also shown that high-frequency mixing could level these fluctuations and more significantly improve the mixing quality. In the second part of the paper a faster and simplified method of evaluation of mixing quality was introduced. This method was based on calculating the length of the contact interface between mixing fluids. It was used to evaluate the 2D type serpentine micromixer performance under various types of vibrations and under a wide range of vibration frequencies.
Go to article

This page uses 'cookies'. Learn more