Search results

Filters

  • Journals

Search results

Number of results: 5
items per page: 25 50 75
Sort by:

Abstract

The non linearities in the motor of an electrodynamic loudspeaker are still a discussed topic. This paper studies the influence of the force factor variation with the coil displacement on the harmonic and inter-modulation distortions. The real variation is described at least by a linear and a quadratic term. The effect of each term is studied separately, as they don't influence the same kind of frequencies, harmonics or inter-modulation. Both terms considered together result in enhanced effects. The dissymmetry of the Bl variation with regard to the coil centered position has also peculiar effects. This paper presents the method developed to calculate the power of each harmonic and inter-modulation frequency. This allows to compare the obtained values and thus the induced nonlinearities.
Go to article

Abstract

The development of digital microphones and loudspeakers adds new and interesting possibilities of their applications in different fields, extended from industrial, medical to consumer audio markets. One of the rapidly growing field of applications is mobile multimedia, such as mobile phones, digital cameras, laptop and desktop PCs, etc. The advances have also been made in digital audio, particularly in direct digital transduction, so it is now possible to create the all-digital audio recording and reproduction chains potentially having several advantages over existing analog systems.
Go to article

Abstract

The aim of this paper is to present a way of ranking the nonlinearities of electrodynamic loudspeakers. For this purpose, we have constructed a nonlinear analytic model which takes into account the variations of the small signal parameters. The determination of these variations is based on a very precise measurement of the electrical impedance of the electrodynamic loudspeaker. First, we present the experimental method to identify the variations of these parameters, then we propose to study theoretically the importance of these nonlinearities according to the input level or the input frequency. We show that the parameter which creates most of the distortions is not always the same and depends mainly on both the input level and the input frequency. Such results can be very useful for optimization of electrodynamic loudspeakers.
Go to article

Abstract

Sound processing with loudspeaker driving depends critically on high quality electroacoustic transducers together with their relevant amplifiers. In this paper, the nonlinear effects of electrodynamic loudspeakers are investigated as regard the influence of the changes of their main descriptive parameters values. Indeed, while being operated nonlinear effects observed with loudspeakers are due to changes of such constitutive parameters. Regarding either current or voltage-drive, an original model based on Simulink R is presented, taking account of all the electrical and mechanical properties closely associated with nonlinear behaviours. Moreover, as such a Simulink R model may be combined with the PSpice R advanced software, the behaviour of both loudspeaker and amplifier can be exhaustively investigated and optimized. To this end, the amplifier is simulated thanks to the Orcad-Capture-PSpiceR software prior to match with the loudspeaker model with the so-called SLPS co-simulator. Then, values of the current flowing through the loudspeaker can be determined and plotted considering voltage controlling. Obviously in this case current-drive has not to be assessed. This way to proceed allows us to highlight any critical information especially due to the voice coil displacement, yielded velocity, and acceleration of the diaphragm. Indeed our approach testifies to the imperative necessity of mechanical measurements together with electrical ones. Then, considering a given amplifier-loudspeaker association with specific parameters changes of the latter, the entailed nonlinear distortion allows us to qualify and criticize the whole design. Such an original approach should be most valuable so as to match the best fitted amplifier with a given electrodynamic loudspeaker. Then non linear effects due to voltage and current-drive are compared highlighting the advantages of an apt currentcontroled policy.
Go to article

Abstract

A hybrid method is presented for the integration of low-, mid-, and high-frequency driver filters in loud-speaker crossovers. The Pascal matrix is exploited to calculate denominators; the locations of minimum values in frequency magnitude responses are associated with the forms of numerators; the maximum values are used to compute gain factors. The forms of the resulting filters are based on the physical meanings of low-pass, band-pass, and high-pass filters, an intuitive idea which is easy to be understood. Moreover, each coefficient is believed to be simply calculated, an advantage which keeps the software-implemented crossover running smoothly even if crossover frequencies are being changed in real time. This characteristic allows users to efficiently adjust the bandwidths of the driver filters by subjective listening tests if objective measurements of loudspeaker parameters are unavailable. Instead of designing separate structures for a low-, mid-, and high-frequency driver filter, by using the proposed techniques we can implement one structure which merges three types of digital filters. Not only does the integration architecture operate with low computational cost, but its size is also compact. Design examples are included to illustrate the effectiveness of the presented methodology
Go to article

This page uses 'cookies'. Learn more