Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 4
items per page: 25 50 75
Sort by:

Abstract

We derive exact and approximate controllability conditions for the linear one-dimensional heat equation in an infinite and a semi-infinite domains. The control is carried out by means of the time-dependent intensity of a point heat source localized at an internal (finite) point of the domain. By the Green’s function approach and the method of heuristic determination of resolving controls, exact controllability analysis is reduced to an infinite system of linear algebraic equations, the regularity of which is sufficient for the existence of exactly resolvable controls. In the case of a semi-infinite domain, as the source approaches the boundary, a lack of L2-null-controllability occurs, which is observed earlier by Micu and Zuazua. On the other hand, in the case of infinite domain, sufficient conditions for the regularity of the reduced infinite system of equations are derived in terms of control time, initial and terminal temperatures. A sufficient condition on the control time, heat source concentration point and initial and terminal temperatures is derived for the existence of approximately resolving controls. In the particular case of a semi-infinite domain when the heat source approaches the boundary, a sufficient condition on the control time and initial temperature providing approximate controllability with required precision is derived.
Go to article

Abstract

The Bulletin of the Polish Academy of Sciences: Technical Sciences (Bull.Pol. Ac.: Tech.) is published bimonthly by the Division IV Engineering Sciences of the Polish Academy of Sciences, since the beginning of the existence of the PAS in 1952. The journal is peer‐reviewed and is published both in printed and electronic form. It is established for the publication of original high quality papers from multidisciplinary Engineering sciences with the following topics preferred: Artificial and Computational Intelligence, Biomedical Engineering and Biotechnology, Civil Engineering, Control, Informatics and Robotics, Electronics, Telecommunication and Optoelectronics, Mechanical and Aeronautical Engineering, Thermodynamics, Material Science and Nanotechnology, Power Systems and Power Electronics. Journal Metrics: JCR Impact Factor 2018: 1.361, 5 Year Impact Factor: 1.323, SCImago Journal Rank (SJR) 2017: 0.319, Source Normalized Impact per Paper (SNIP) 2017: 1.005, CiteScore 2017: 1.27, The Polish Ministry of Science and Higher Education 2017: 25 points. Abbreviations/Acronym: Journal citation: Bull. Pol. Ac.: Tech., ISO: Bull. Pol. Acad. Sci.-Tech. Sci., JCR Abbrev: B POL ACAD SCI-TECH Acronym in the Editorial System: BPASTS.
Go to article

Abstract

The constrained averaged controllability of linear one-dimensional heat equation defined on R and R+ is studied. The control is carried out by means of the time-dependent intensity of a heat source located at an uncertain interval of the corresponding domain, the end-points of which are considered as uniformly distributed random variables. Employing the Green’s function approach, it is shown that the heat equation is not constrained averaged controllable neither in R nor in R+. Sufficient conditions on initial and terminal data for the averaged exact and approximate controllabilities are obtained. However, constrained averaged controllability of the heat equation is established in the case of point heat source, the location of which is considered as a uniformly distributed random variable. Moreover, it is obtained that the lack of averaged controllability occurs for random variables with arbitrary symmetric density function.
Go to article

This page uses 'cookies'. Learn more