Wyniki wyszukiwania

Filtruj wyniki

  • Czasopisma
  • Autorzy
  • Słowa kluczowe
  • Data
  • Typ

Wyniki wyszukiwania

Wyników: 74
Wyników na stronie: 25 50 75
Sortuj wg:

Abstrakt

The study presents the results of research aimed at the construction of a model of the relationship between the physical properties of metal and the types of toughening treatment and modifiers used in the modification of BA1044 alloy. Samples of melts were subjected to four variants of the heat treatment and to five types of modification. Studies of the samples consisted in measurements of five physical parameters. Consequently, it was necessary to seek a relationship between the nine input parameters and five output parameters. With this number of the variables and a limited number of samples, searching for the relationships by way of statistical methods was obviously impossible, so it was decided to create an approximate model through the use of fuzzy logic. This study describes the process of creating a model and presents the results of some simulation experiments that confirm the validity of the correct approach.
Przejdź do artykułu

Abstrakt

The lifetime of guide grates in pusher furnaces for heat treatment could be increased by raising the flexibility of their structure through, for example, the replacement of straight ribs, parallel to the direction of grate movement, with more flexible segments. The deformability of grates with flexible segments arranged in two orientations, i.e. crosswise (perpendicular to the direction of compression) and lengthwise (parallel to the direction of compression), was examined. The compression process was simulated using SolidWorks Simulation program. Relevant regression equations were also derived describing the dependence of force inducing the grate deformation by 0.25 mm ‒ modulus of grate elasticity ‒ on the number of flexible segments in established orientations. These calculations were made in Statistica and Scilab programs. It has been demonstrated that, with the same number of segments, the crosswise orientation of flexible segments increases the grate structure flexibility in a more efficient way than the lengthwise orientation. It has also been proved that a crucial effect on the grate flexibility has only the quantity and orientation of segments (crosswise / lengthwise), while the exact position of segments changes the grate flexibility by less than 1%.
Przejdź do artykułu

Abstrakt

A research of wear resistance of an austenitic cast iron with higher resistance to abrasive-wear and maintained corrosion resistance characteristic for Ni-Resist cast iron is presented. For the examination, structure of raw castings was first formed by proper selection of chemical composition (to make machining possible). Next, a heat treatment was applied (annealing at 550 °C for 4 hours followed by air cooling) in order to increase abrasive-wear resistance. One of the factors deciding intensity of wear appeared to be the chilling degree of castings. However, with respect to unfavourable influence of chilling on machining properties, an important factor increasing abrasivewear resistance is transformation of austenite to acicular ferrite as a result of annealing non-chilled castings. Heat treatment of non-chilled austenitic cast iron (EquNi > 16%) resulted in much higher abrasive-wear resistance in comparison to the alloy having pearlitic matrix at ambient temperature (EquNi 5.4÷6.8%).
Przejdź do artykułu

Abstrakt

The author has developed and patented several types of gas cupola furnaces, which, due to replacing coke with gas, do not emit carbon monoxide, sulfur dioxide and coke dust. The author has defined the optimal modes of gas-and-air mixture combustion, i.e. the optimal coefficient of air discharge and gas mixture escape speed in melting cast iron. It has been experimentally proved that from the point of view of obtaining the maximum temperature, the optimal was the process with some lack of air, i.e. with α = 0.98. The results of metallurgical studies used in the article allowed to develop an optimal structure of the gas cupola furnace with a heterogeneous refractory filling, and to establish the optimal composition of the filling. For the first time the optimal composition of the filling is given: 40% of chamotte, 30% of high-alumina refractory, 30% of electrode scrap. It has been noted that when gas cupola furnaces were used, the main environmental advantage was the reduction of dust emission into the atmosphere, CO and SO2 content.
Przejdź do artykułu

Abstrakt

The article describes the problem of selection of heat treatment parameters to obtain the required mechanical properties in heat- treated bronzes. A methodology for the construction of a classification model based on rough set theory is presented. A model of this type allows the construction of inference rules also in the case when our knowledge of the existing phenomena is incomplete, and this is situation commonly encountered when new materials enter the market. In the case of new test materials, such as the grade of bronze described in this article, we still lack full knowledge and the choice of heat treatment parameters is based on a fragmentary knowledge resulting from experimental studies. The measurement results can be useful in building of a model, this model, however, cannot be deterministic, but can only approximate the stochastic nature of phenomena. The use of rough set theory allows for efficient inference also in areas that are not yet fully explored.
Przejdź do artykułu

Abstrakt

This scientific paper presents the research on influence of austenitizing temperature on kinetics and evolution of the spheroidal plain cast iron during eutectoid reaction in isothermal conditions. The cast iron has been austenitized in temperatures of 900, 960 or 1020°C. There were two temperature values of isothermal holding taken into consideration: 760 or 820°C. The order of creation of reaction products and their morphology have been analyzed. The particular attention has been paid to the initial stage of transformation. The qualitative research has been executed using the transmission electron microscope (TEM), as well as quantitative research (LM). The influence of austenitizing temperature has also been determined on transformation kinetics and structural composition. It was found that the increase of austenitizing temperature is conductive to the initial release of structures by metastable system. A reduction of time was observed of the initial stage of transformation at temperature close to Ar12 with its simultaneous elongation at temperature close to Ar11, with an increase of austenitizing temperature. The dependences obtained by the metallographic method confirm the prior results of dilatometric research of eutectoid reaction.
Przejdź do artykułu

Abstrakt

Creep-resistant parts of heat treatment furnaces are in most cases made from high-alloyed chromium-nickel and nickel-chromium iron alloys, both cast and wrought. This paper presents the types of casting alloys used for this particular purpose, since the majority of furnace components are made by the casting process. Standards were cited which give symbols of alloy grades used in technical specifications by the domestic industry. It has been indicated that castings made currently are based on a wider spectrum of the creep-resistant alloy grades than the number of alloys covered by the standards. Alloy grades recommended by the technical literature for individual parts of the furnace equipment were given. The recommendations reflect both the type of the technological process used and the technical tasks performed by individual parts of the furnace equipment. Comments were also made on the role of individual alloying elements in shaping the performance properties of castings.
Przejdź do artykułu

Abstrakt

The paper presents the effect of pre-heat treatment on the mechanical properties of ductile cast iron with elevated content of Cu and Mo elements. Austempered Ductile Iron is a material with non-standard properties, combining high tensile strength and abrasion resistance with very good plasticity. In addition, it is prone to strain hardening and have good machining abilities. The study was conducted for five designed heat treatment cycles. The variables were the time and temperature of the pre-heat treatment, followed by one of two standard heat treatments for ADI cast iron. The aim of the authors was fragmentation of the grains of perlite during the initial heat treatment. It is presumed, that subsequent heat treatment will cause further refinement of the microstructure than would be the case without initial heat treatment. Diffusion is much faster than in case of ferritic matrix of cast iron. The results will be used to evaluate material for the production of parts of equipment that must operate under extreme load conditions.
Przejdź do artykułu

Abstrakt

The main aim of this study was to examine the compression-induced state of stress arising in castings of the guide grates during operation in pusher-type furnaces for heat treatment. The effect of grate compression is caused by its forced movement in the furnace. The introduction of flexible segments to the grate structure changes in a significant way the stress distribution, mainly by decreasing its value, and consequently considerably extends the lifetime of the grates. The stress distribution was examined in the grates with flexible segments arranged crosswise (normal to the direction of the grate compression) and lengthwise (following the direction of force). A regression equation was derived to describe the relationship between the stress level in a row of ribs in the grate and the number of flexible segments of a lengthwise orientation placed in this row. It was found that, regardless of the distribution of the flexible segments in a row, the stress values were similar in all the ribs included in this row, and in a given row of the ribs/flexible segments a similar state of stress prevailed, irrespective of the position of this row in the whole structure of the grate and of the number of the ribs/flexible segments introduced therein. Parts of the grate responsible for the stress transfer were indicated and also parts which play the role of an element bonding the structure.
Przejdź do artykułu

Abstrakt

In the paper the results and analysis of corrosion tests were presented for low-alloyed cast steel in as-cast state and after heat treatment operations. Such alloys are applied for heavy loaded parts manufacturing, especially for mining industry. The corrosion test were performed in conditions of high salinity, similar to those occurring during the coal mining. The results have shown, that small changes in chemical composition and the heat treatment influence significantly the corrosion behaviour of studied low-alloyed cast steels.
Przejdź do artykułu

Abstrakt

The rolls for the hot rolling finishing stands are cast centrifugally as two or three-layer rolls. The working layer is called a shell. The material of the shell is selected according to the position of the respective roll in the final finishing stand of the rolling mill. Typically, a combination of rolls made of a high-chromium cast iron + indefinite cast iron or high-speed steel + indefinite cast iron is commonly used. Great attention has been paid to indefinite cast iron in recent years and this material received a number of modifications that led to the increase of material properties up to 20% in comparison to the ordinary indefinite cast iron. But the goals of the new generation of material for hot rollers were chosen higher: increasing of production about 30% and more. This material has specific physical properties, heat treatment requirements as well as rolling mill requirements as is stated in the paper. It is expected that introduction of this material will reduce the difference between wear of the front and finishing stands, which can extend rolling campaigns and have a positive effect on the reduction rolls exchanges, the grinding of the rolls and the reduction of downtime.
Przejdź do artykułu

Abstrakt

The β-phase Titanium (β-Ti) alloys have been under the spotlight in the recent past for their use as biomedical prosthetic materials owing to their excellent properties such as low elastic modulus, high corrosion resistance and tensile strength. Recently, Niobium (Nb) has gained a lot of attention as a β-phase stabilizing element in Ti alloys to replace Vanadium (V) due to its excellent solubility in Ti, low elastic modulus and biocompatibility. In this work, low cost Ti-20Nb binary alloy has been fabricated via powder metallurgy procedures. The blended powder mixtures of Ti and Nb were sintered at 900°C for 20 mins by the Spark Plasma Sintering (SPS) with an applied uniaxial pressure of 40 MPa. The heating rate was fixed at 50°C/min. The sintered alloy was subject to heat treatments at 1200°C in vacuum condition for various time durations. The characterizations of microstructure obtained during this process were done using FE-SEM, EDS and XRD. By increasing heat treatment time, as understood, the volume of residual Nb particles was decreased resulting in accelerated diffusion of Nb into Ti. Micro hardness of the alloy increased from 340 to 355 HV with the increase in β phase content from 30 to 45%. The resultant alloys had relatively high densities and homogenized microstructures of dispersed lamellar β grains in α matrix.
Przejdź do artykułu

Abstrakt

Free convection is one of the heat transfer modes which occurs within the heat-treated bundles of steel rectangular section. A comprehensive study of this phenomenon is necessary for optimizing the heating process of this type of charge. The free convection intensity is represented by the Rayleigh number Ra. The value of this criterion depends on the following parameters: the mean section temperature, temperature difference within the section, kinematic coefficient of viscosity, volume expansion coefficient and the Prandtl number. The paper presents the analysis of the impact of these factors on free convection in steel rectangular sections. The starting point for this analysis were the results of experimental examinations. It was found that the highest intensity of this process occurs for the temperature of 100°C. This is mainly caused by changes in the temperature difference observed in the area of sections and changes in kinematic coefficient of viscosity of air. The increase in the value of the Rayleigh number criterion at the initial stage is attributable to changes in the parameter of temperature difference within the section. After exceeding 100°C, the main effect on convection is from changes in air viscosity. Thus, with further increase in temperature, the Rayleigh number starts to decline rapidly despite further rise in the difference in temperature.
Przejdź do artykułu

Abstrakt

In the paper the results of experimental research of the process of flow forming of cylindrical drawpieces were presented. The drawpieces were made of the 3.1 mm thick AMS 5596 sheet by drawing process. Tests were performed on two-roller metal spinning machine of a vertical axis Leifeld SFC 800 V500. The main purpose of this research was to determine the relationship between relative thickness reduction and the mechanical properties of tested material. Knowledge of these dependencies is especially useful in designing machines’ components manufactured by flow forming, in the selection of parameters of realization of this technological process as well. Mechanical properties were determined on the basis of uniaxial tensile of the micro samples obtained from the drawpieces: (I) after cold flow forming, (II) after cold flow forming and in-process heat treatment. Obtained results were shown graphically in the diagrams and their analysis was carried out. In addition, the microstructure of the sheet material tested after drawing and flow forming is presented.
Przejdź do artykułu

Abstrakt

The research focused on the influence of the solution temperature on the structure of precipitation hardening multi-component hypoeutectic aluminium alloys. The AlSi8Cu3 and AlSi6Cu4 alloys were used in the study and were subjected to a thermal-derivative analysis. The chemical composition and crystallization of phases and eutectics shift the characteristic points and the corresponding temperatures to other values, which affect to, for instance, the solution temperature. The alloys were supersaturated at 475°C (according to the determined temperature (TSol) and 505°C for 1.5 hours. Aging was performed at 180°C for 5 hours. The Rockwell hardness measurement, metallographic analysis of alloys by means of light microscopy as well as chemical and phase analysis using scanning electron microscopy and X-ray crystallography were carried out on alloys. The use of computer image analysis enabled the determination of the amount of the current Al2Cu phase in the alloys before and after heat treatment.
Przejdź do artykułu

Abstrakt

Paper presents the assessment of impact of heat treatment on durability in low-cycle fatigue conditions (under constant load) in castings made using post-production scrap of MAR-247 and IN-713C superalloys. Castings were obtained using modification and filtration methods. Additionally, casting made of MAR-247 were subjected to heat treatment consisting of solution treatment and subsequent aging. During low-cycle fatigue test the cyclic creep process were observed. It was demonstrated that the fine-grained samples have significantly higher durability in test conditions and , at the same time, lower values of plastic deformation to rupture Δϵpl. It has been also proven that durability of fine-grained MAR-247 samples can be further raised by about 60% using aforementioned heat treatment.
Przejdź do artykułu

Abstrakt

The aim of that work was the evaluation of the quality of welded connections elements (welds) from the 30HGS steel and titanium alloy Ti6Al4V. The metallographic, factographic tests were used, and measurements of microhardness with the Vickers method. In the head weld of the 30HGS steel there were non-metallic partial division and bubbles observed. The average microhardness in the head connection was 320 HV0.1. There was no significant increase/decrease observed of microhardness in the head influence zone of the weld. There was a good condition of head connections observed, in accordance with the standard EN12517 and EN25817. In the head weld of Ti6Al4V titanium alloy there were single, occasional non-metallic interjections and bubbles observed. There were no cracks both on the weld, and on the border of the heat influence zone. The value of microhardness in head connection was in the range 300÷445 HV0.1. Reveal a very good condition of the head connections in accordance with the standard EN12517 and EN25817. The factographic tests prove the correctness of welded connections done and then heat treatment in case of steel and titanium alloy.
Przejdź do artykułu

Abstrakt

The aim of the current study was to examine the structure of an alloy treated at various temperatures up to 2,000–2,100 °C. Among research techniques for studying alloy structure there were the electron and optical microstructure, X-ray structure, and spectral analysis, and for studying the developed furnace geometric parameters the authors employed mathematical modeling method. The research was performed using aluminum smelting gas-fired furnaces and electric arc furnaces. The objects of the study were aluminum alloys of the brand AK7p and AK6, as well as hydrogen and aluminum oxide in the melt. For determining the hydrogen content in the aluminum alloy, the vacuum extraction method was selected. Authors have established that treatment of molten aluminum alloy in contact with carbon melt at high temperatures of 2,000–2,100 °C has resulted in facilitating reduction of hydrogen and aluminum oxide content in the melt by 40-43% and 50-58%, respectively, which is important because hydrogen and aluminum oxide adversely affect the structure and properties of the alloy. Such treatment contributes to the formation of the extremely fine-grained microstructure of aluminum alloy.
Przejdź do artykułu

Abstrakt

The article describes the trend towards increased use of induction crucible furnaces for cast iron smelting. The use of gas cupola’s duplex process – induction crucible furnace – has been proved the effective direction of scientific and technical advance in the foundry industry. Gas cupolas and induction furnaces are used for cast iron smelting at the Penza Compressor Plant where in the 1960s the author developed and introduced gas cupolas for the first time in the world. In the article, the author represents the findings of the investigation on thermodynamics of crucible reduction of silicon, which is pivotal when choosing the technological mode for cast iron smelting in induction furnaces. The author proposes a new reaction crucible diagram with due account of both partial pressure and activity of the components involved into the process. For the first time ever, the electrochemical mechanism of a crucible reaction has been studied and the correctness of the proposed diagram has been confirmed.
Przejdź do artykułu

Abstrakt

This paper deals with influence of chrome addition and heat treatment on segregation of iron based phases in the secondary alloy AlSi7Mg0.3 microstructure by chrome and heat treatment. Iron is the most common and harmful impurity in aluminum casting alloys and has long been associated with an increase of casting defects. In generally, iron is associated with the formation of Fe-rich intermetallic phases. It is impossible to remove iron from melt by standard operations, but it is possible to eliminate its negative influence by addition some other elements that affect the segregation of intermetallics in less harmful type or by heat treatment. Realization of experiments and results of analysis show new view on solubility of iron based phases during melt preparation with higher iron content and influence of chrome as iron corrector of iron based phases.
Przejdź do artykułu

Abstrakt

In the course of homogenizing annealing of aluminium alloys being cast continually or semi-continually it appears that chemical inhomogenity takes off within separate dendritic cells (crystal segregation). It is about a diffusion process that takes place at the temperature which approaches the liquid temperature of the material. In that process the transition of soluble intermetallic compounds and eutectic to solid solution occurs and it suppresses crystal segregation significantly [1]. The temperature, homogenization time, the size of dendritic cells and diffusion length influences homogenizing process. The article explores the optimization of homogenizing process in terms of its time and homogenizing annealing temperature which influence mechanical properties of AlZn5,5Mg2,5Cu1,5 alloy.
Przejdź do artykułu

Abstrakt

This article deals with the fatigue properties of newly used AlZn10Si8Mg aluminium alloy where the main aim was to determine the fatigue strength and compare it with the fatigue strength of AlSi7Mg0.3 secondary aluminium alloys which is used in the automotive industry for cyclically loaded components. AlZn10Si8Mg aluminium alloy, also called UNIFONT 90, is self-hardening (without heat treatments), which contributes to economic efficiency. This is one of the main reasons why is compared, and may be an alternative replacement for AlSi7Mg0.3 alloy which is heat treated to achieve required mechanical properties. The experiment results show that the fatigue properties of AlZn10Si8Mg alloy are comparable, if not better, than AlSi7Mg0.3 alloy. Fatigue properties of AlZn10Si8Mg alloy are achieved after seven days of natural ageing, immediately after casting and achieving value of fatigue strength is caused by structural components formed during solidification of the melt.
Przejdź do artykułu

Ta strona wykorzystuje pliki 'cookies'. Więcej informacji