Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 33
items per page: 25 50 75
Sort by:

Abstract

The environment is the greatest good for the people. Everyone wants to breath air of the best possible quality, whether living in the city center of a metropolis or in a rural area. Air polluted with very fine particles contribute to the negative effect on people’s health and the whole environment. A significant part of air dust pollution comes from the so-called low emissions sources which include: non-standard furnaces, fireplaces, low-efficiency outdated boilers and local heat sources. Since the beginning of Polish Mining Group’s existence, the company actively participates and supports many activities, the aim of which is to improve the air quality by producing and supplying high quality coal for the residential sector. The company has undertaken pro-ecological activities towards creating a new, pro-ecological strategy as well as product offer. The production of an ecological coal assortment is systematically developing but new coal products are also being launched on the market. One of the company’s priorities is the production of thermal coal for the residential sector. Many organizational and technological changes have been made In that area (e.g. the establishmsnt of the Eco-Fuels Production Plant) to ensure a suitable level of production of the highest quality thermal coal.
Go to article

Abstract

The article presents the current state of the CNG market used as an alternative fuel for car engines. Attention was paid to European Union directives requirements and the current state of the directives’ fulfillment. The economic aspect of CNG usage was analyzed and the approximate costs of driving 10,000 km on different fuels in the last four years were presented. The PtG process which uses electric energy (hydrogen production) and carbon dioxide captured from the flue gas for the production of synthetic methane were discussed. The scheme of the SNG plant with the indication of its most important components was presented, and attention was paid to the mutual complementation of PtG technologies with carbon dioxide capture technology. The benefits of synthetic methane production are presented and the use of compressed natural gas to power engines in vehicles has been described. First, the focus was on the single-fuel use of CNG in bus and truck engines, paying particular attention to the ecological aspect of the implemented solutions. It has been shown that the use of compressed natural gas will reduce almost 100% of the particulates emission from the combustion process. The advantages and disadvantages of the alternative fuel supply are given. Next, the aspect of dual-fuel use in diesel engines was analyzed on the example of a smaller engine. The degree of reduction of harmful compounds emission from the combustion process is shown. Finally, attention was paid to the possible scale effect, referring to the number of motor vehicles in Poland.
Go to article

Abstract

On May 17, 2018, the National Center for Research and Development announced the initiation of a new procedure within the Hydrogen Storage Program. The objective was to develop a Hydrogen Storage System for use with fuel cells and its demonstration in a Mobile Facility. This is to create an alternative to the use of fossil fuels and create a field for competition in creating solutions in the field of access to “clean” energy. The National Center for Research and Development is responsible for the development of assumptions, regulations and implementation. The analysis presents the main assumptions of the program is correlated to the current legal situation related to the financing of Research and Development. An in-depth study concerns the ways of using innovative partnership and its placement in the system of European Union legal acts. The idea of the pre-commercial procurement procedure (Pre-Commercial Procurement), which was developed to support the implementation of prototypes of solutions – resulting from research and development – with a high potential for possible commercialization, was described in details. This procedure is characterized by ensuring the financing of a product or service at an early stage of development. Although this creates the risk of failure of the project, it stimulates technological development.
Go to article

Abstract

Among the numerous modern, high-efficiency energy technologies allowing for the conversion of chemical energy of coal into electricity and heat, the Direct Carbon Fuel Cells (DCFC) deserve special attention. These are devices that allow, as the only one among all types of fuel cells, to directly convert the chemical energy contained in solid fuel (coal) into electricity. In addition, they are characterized by high efficiency and low emission of pollutants. The paper reviews and discusses previous research and development works, both around the world and in Poland, into the technology of direct carbon fuel cells with an alkaline (hydroxide) electrolyte.
Go to article

Abstract

The main aim of this article is to present the results of research on energy poverty conducted in Katowice and Bytom, two cities situated in the Silesian voivodeship [region] in Poland. The study attempted to verify whether the energy divide concept elaborated by Bouzarovski and Tirado Herrero (2015) has different undiscovered dimensions which result not only from the differences in energy prices and incomes between various regions, but also from other factors such as consumer behaviours. In discussions about the energy divide, this aspect of energy poverty has so far been rather neglected. The question remains whether the distinction between energy poverty levels of countries, regions, and other territories like cities is determined by consumer behaviours or only by income and energy prices. Katowice and Bytom seem to be perfect places to conduct such. The most important conclusions emerging from the presented research are: (a) low income does not affect the behaviour of people suffering from energy poverty, even though it theoretically should; (b) despite their difficult financial situation, low-income households do little to improve their situation; and (c) public policy should take into account in the spatial distribution of households affected by energy poverty other aspects, including non-income and behavioural factors and patterns of persons affected by energy poverty, which only deepen existing social inequalities rather than reduce them.
Go to article

Abstract

The most common chemical’s spills in typical transportation accidents are those with petroleum products such as diesel fuel, the consequence of which is an extensive pollution of the soil. In order to plan properly fuel recovery from the soil, it is important to gain information about the soil depth which may be affected by pollutant and to predict the pollutant concentration in different soil layers. This study deals with the impact of basic atmospheric conditions, i.e. air temperature and humidity on the diesel fuel migration through the soil. The diesel fuel was spilled into columns (L = 30 cm; D = 4.6 cm) filled with sandy and clay soil samples, and its concentrations at various depths were measured after 11 days under various air temperature (20 and 40°C) and relative humidity (30–100%) conditions. The effects observed were explained by understanding physical processes, such as fuel evaporation, diffusion and adsorption on soil grains. The increase in temperature results in higher fuel evaporation loss and its faster vertical migration. The relative humidity effect is less pronounced but more complex, and it depends much on the soil type.
Go to article

Abstract

The article presents a zero-dimensional mathematical model of a tubular fuel cell and its verification on four experiments. Despite the fact that fuel cells are still rarely used in commercial applications, their use has become increasingly more common. Computational Flow Mechanics codes allow to predict basic parameters of a cell such as current, voltage, combustion composition, exhaust temperature, etc. Precise models are particularly important for a complex energy system, where fuel cells cooperate with gas, gas-steam cycles or ORCs and their thermodynamic parameters affect those systems. The proposed model employs extended Nernst equation to determine the fuel cell voltage and steadystate shifting reaction equilibrium to calculate the exhaust composition. Additionally, the reaction of methane reforming and the electrochemical reaction of hydrogen and oxygen have been implemented into the model. The numerical simulation results were compared with available experiment results and the differences, with the exception of the Tomlin experiment, are below 5%. It has been proven that the increase in current density lowers the electrical efficiency of SOFCs, hence fuel cells typically work at low current density, with a corresponding efficiency of 45–50% and with a low emission level (zero emissions in case of hydrogen combustion).
Go to article

Abstract

The paper describes a fuel cell based system and its performance. The system is based on two fuel cell units, DC/DC converter, DC/AC inverter, microprocessor control unit, load unit, bottled hydrogen supply system and a set of measurement instruments. In the study presented in the paper a dynamic response of the proton exchange membrane (PEM) fuel cell system to unit step change load as well as to periodical load changing cycles in the form of semi-sinusoidal and trapezoidal signals was investigated. The load was provided with the aid of an in-house-developed electronic load unit, which was fully PC controlled. The apparatus was commissioned by testing the steady-state operation of the module. The obtained efficiency of the fuel cell shows that the test apparatus used in the study provides data in substantial agreement with the manufacturer’s data.
Go to article

Abstract

The aim of this study was to analyze diesel fuel consumption in Poland and identification of the causes of changes in the needs of individual sectors of the economy for this type of fuel. Time range of the researches covered from 2004 to 2014. Data from the Central Statistical Office (CSO) were the source material. In the years 2004-2014 diesel consumption in Poland was 111 553 thousand tons. In 2014 domestic consumption of diesel fuel was 11 203 thousand tons and it was more than 2 times higher than the level of consumption of this fuel in 2004. The highest consumption of diesel in Poland in the period took place in 2012. The increase in the consumption of diesel fuel in Poland had benefited from increased demand for diesel in transport, which became a result of an increased amount of transport services. The share of transport in the consumption of diesel fuel in Poland for the period 2004- 2014 was about 75%. Another area, which consumes the largest quantity of DF in Poland is agriculture. Consumption of this fuel in agriculture in the years 2004- 2014 increased by 7%. DF consumption in industry and the manufacturing sector it was variable. DF biggest consumption in these sectors of the economy in the period was recorded in 2004. The analyzes did not allow to identify the specific causes of changes in the use of DF in the industry and manufacturing. In transport it showed a relationship between the consumption of diesel fuel and the amount of transport work and the transported cargo.
Go to article

Abstract

Currently is the biggest problem of metallurgical companies the increase of fossil fuel prices and strict environmental regulations. As a result of this, companies must look for alternatives that would reduce the amount of fossil fuels and reduce emissions. Wood sawdust has huge energy potential, which can be used in the process of agglomerate production. This type of energy is locally available, has some similar properties as fossil fuels and is economically advantageous. For these reasons, experimental study using laboratory agglomeration pan was realized to study the possibility of agglomerate production with a mixed fuel. Experimental results show the viability of mixed fuel use in the agglomeration process, but also show significant possibility for improvement. The maximum acceptable substitution ratio, which corresponds to qualitatively suitable agglomerate is 20% of pine sawdust. Based on the realized experiments and the obtained results we have acceded to the intensification of the agglomeration process with an objective to increase the amount of added substitution fuel while maintaining the required quality of agglomerate.
Go to article

Abstract

This paper is devoted towards life cycle economic analysis (LCEA) of a solar photovoltaic (PV) powered tri-cycle. The paper is meant to propose a more systematic approach in determining the optimum use of scarce resources in order to determine the most cost-effective option of the solar tri-cycle. This analysis is based on the life cycle cost of this solar vehicle, involving its comparison with the customary fuel-based tri-cycle which exhibits the relatively less expenditure of the solar alternative. The economic analysis takes into account the fact that over 20 years, the overall price of solar component, replacement and electricity charges, is much lower as compared to that of a fuel-based tri-cycle in India taking into consideration the fuel cost, maintenance and annual inflation over the same period.
Go to article

Abstract

Five models and methodology are discussed in this paper for constructing classifiers capable of recognizing in real time the type of fuel injected into a diesel engine cylinder to accuracy acceptable in practical technical applications. Experimental research was carried out on the dynamic engine test facility. The signal of in-cylinder and in-injection line pressure in an internal combustion engine powered by mineral fuel, biodiesel or blends of these two fuel types was evaluated using the vibro-acoustic method. Computational intelligence methods such as classification trees, particle swarm optimization and random forest were applied.
Go to article

Abstract

The paper presents the simulation analysis determining the effect of tyre energy efficiency class on fuel consumption of a passenger car. Calculations were made assuming the wheel movement on a dry and smooth asphalt road surface. The tests based on a simulation model were performed on 61 types of tyres, being characterised by different sizes and energy efficiency classes. Different values of rolling resistance coefficient were adopted (in accordance with energy efficiency classes), also, the values of basic and additional resistance to motion were determined. Based on them, engine speeds and load torque corresponding to respective specific fuel consumption were estimated. This parameter allowed the relationship between average mileage fuel consumption and tyre energy efficiency class to be determined on the basis of the NEDC test.
Go to article

Abstract

The influence of sewage sludge torrefaction temperature on fuel properties was investigated. Non-lignocellulosic waste thermal treatment experiment was conducted within 1 h residence time, under the following temperatures: 200, 220, 240, 260, 280 and 300°C. Sawdust was used as lignocellulosic reference material. The following parameters of biochar have been measured: moisture, higher heating value, ash content, volatile compounds and sulfur content. Sawdust biochar has been confirmed to be a good quality solid fuel. High ash and sulfur content may be an obstacle for biochar energy reuse. The best temperature profile for sawdust torrefaction and fuel production for 1 h residence time was 220°C. At this temperature the product contained 84% of initial energy while decreased the mass by 25%. The best temperature profile for sewage sludge was 240°C. The energy residue was 91% and the mass residue was 85%. Higher temperatures in both cases caused excessive mass and energy losses.
Go to article

Abstract

In the paper, a numerical simulation of the co-combustion process of sewage sludge gasifi cation syngas in a hard coal-fi red boiler was done. Two different syngases (SS1 and SS2) were taken in consideration. Additional (reburning) fuel was injected into the combustion chamber, which was modeled as a plug fl ow reactor (PFR). The molar fl ow rates ratio of reburning fuel is assumed to be 5.0%, 7.5%, 10.0%, 12.5% and 15.0% of the whole exhaust. The simulations were conducted for constant pressure equal to 1atm for temperatures range from 600 to 1400 K. It was assumed that a fl ue gases which enters the reburning zone contains 300 ppm of NO and that during combustion only NO is formed without other NOx. Results show that that gas from sewage sludge gasifi cation gives reburning effi ciency of up to 90%. Calculation shows also an optimum value of temperature reburning for gas from sewage sludge gasifi cation which is equal to 1200 K. The type of the sewage sludge has no strong infl uence on the NO reduction.
Go to article

Abstract

The paper describes factors influencing the development of electricity storage technologies. The results of the energy analysis of the electric energy storage system in the form of hydrogen are presented. The analyzed system consists of an electrolyzer, a hydrogen container, a compressor, and a PEMFC fuel cell with an ion-exchange polymer membrane. The power curves of an electrolyzer and a fuel cell were determined. The analysis took the own needs of the system into account, i.e. the power needed to compress the produced hydrogen and the power of the air compressor supplying air to the cathode channels of the fuel cell stack. The characteristics describing the dependence of the efficiency of the energy storage system in the form of hydrogen as a function of load were determined. The costs of electricity storage as a function of storage capacity were determined. The energy aspects of energy accumulation in lithium-ion cells were briefly characterized and described. The efficiency of the charge/discharge cycle of lithium-ion batteries has been determined. The graph of discharge of the lithium-ion battery depending on the current value was presented. The key parameters of battery operation, i.e. the Depth of Discharge (DoD) and the State of Charge (SoC), were determined. Based on the average market prices of the available lithium-ion batteries for the storage of energy from photovoltaic cells, unit costs of electrochemical energy storage as a function of the DoD parameter were determined.
Go to article

Abstract

In this paper are presented results of study fusion characteristics of the biomass ashes from the hydrolyzed lignin and the ashes from the coke breeze. The hydrolyzed lignin ashes were compared with the coke breeze ashes i.e. with a fossil fuel. These ashes were prepared in muffle furnace at the temperature of 550°C (hydrolyzed lignin) and 850°C (coke breeze). Biomass (the hydrolyzed lignin) represents the new fuels for sintering process and an attractive way to decrease CO2 emissions from the energy production. The characterization methods were the following: standard fuel characterization analyses, chemical and mineralogical composition of the ashes and phase analyses of the ashes of biomass and the coke breeze. These ashes were prepared by the same method. Characterisation of the ashes samples was conducted by means of X-ray fluorescence (XRF), X-ray diffraction (XRD) and scanning electron microscopy (SEM). Quantitative analysis of the crystalline and amorphous phases in each of the ash samples were carried out using the Rietveld method. The dominant phase of the ash from the coke breeze was mullite (Al6Si2O13). SiO2 is the dominant phase of the ash from the hydrolyzed lignin.
Go to article

Abstract

This paper describes assumptions, goals, methods, results and conclusions related to fuel tank arrangement of a flying wing passenger airplane configuration. A short overview of various fuel tank systems in use today of different types of aircraft is treated as a starting point for designing a fuel tank system to be used on very large passenger airplanes. These systems may be used to move fuel around the aircraft to keep the centre of gravity within acceptable limits, to maintain pitch and lateral balance and stability. With increasing aircraft speed, the centre of lift moves aft, and for trimming the elevator or trimmer must be used thereby increasing aircraft drag. To avoid this, the centre of gravity can be shifted by pumping fuel from forward to aft tanks. The lesson learnt from this is applied to minimise trim drag by moving the fuel along the airplane. Such a task can be done within coming days if we know the minimum drag versus CG position and weight value. The main part of the paper is devoted to wing bending moment distribution. A number of arrangements of fuel in airplane tanks are investigated and a scenario of refuelling – minimising the root bending moments – is presented. These results were obtained under the assumption that aircraft is in long range flight (14 hours), CL is constant and equal to 0.279, Specific Fuel Consumption is also constant and that overall fuel consumption is equal to 20 tons per 1 hour. It was found that the average stress level in wing structure is lower if refuelling starts from fuel tanks located closer to longitudinal plane of symmetry. It can influence the rate of fatigue.
Go to article

Abstract

The paper addresses the issues of quantification and understanding of Solid Oxide Fuel Cells (SOFC) based on numerical modelling carried out under four European, EU, research projects from the 7FP within the Fuel Cell and Hydrogen Joint Undertaking, FCH JU, activities. It is a short review of the main projects’ achievements. The goal was to develop numerical analyses at a single cell and stack level. This information was integrated into a system model that was capable of predicting fuel cell phenomena and their effect on the system behaviour. Numerical results were analysed and favourably compared to experimental results obtained from the project partners. At the single SOFC level, a static model of the SOFC cell was developed to calculate output voltage and current density as functions of fuel utilisation, operational pressure and temperature. At the stack level, by improving fuel cell configuration inside the stack and optimising the operation conditions, thermal stresses were decreased and the lifetime of fuel cell systems increased. At the system level, different layouts have been evaluated at the steady-state and by dynamic simulations. Results showed that increasing the operation temperature and pressure improves the overall performance, while changes of the inlet gas compositions improve fuel cell performance.
Go to article

Abstract

The aim of this paper was to demonstrate the feasibility of using a Computational Fluid Dynamics tool for the design of a novel Proton Exchange Membrane Fuel Cell and to investigate the performance of serpentine micro-channel flow fields. A three-dimensional steady state model consisting of momentum, heat, species and charge conservation equations in combination with electrochemical equations has been developed. The design of the PEMFC involved electrolyte membrane, anode and cathode catalyst layers, anode and cathode gas diffusion layers, two collectors and serpentine micro-channels of air and fuel. The distributions of mass fraction, temperature, pressure drop and gas flows through the PEMFC were studied. The current density was predicted in a wide scope of voltage. The current density – voltage curve and power characteristic of the analysed PEMFC design were obtained. A validation study showed that the developed model was able to assess the PEMFC performance.
Go to article

Abstract

Metallic fuel slugs containing rare-earth (RE) elements have high reactivity with quartz (SiO2) molds, and a reaction layer with a considerable thickness is formed at the surface of metallic fuel slugs. The surface characterization of metallic fuel slugs is essential for safety while operating a fast reactor at elevated temperature. Hence, it is necessary to evaluate the surface characteristics of the fuel slugs so that chemical interaction between fuel slug and cladding can be minimized in the reactor. When the Si element causes a eutectic reaction with the cladding, it deteriorates the metallic fuel slugs. Thus, it is necessary to examine the characteristics of the surface reaction layer to prevent the reaction of the metallic fuel slugs. In this study, we investigated the metallurgical characteristics of the surface reaction layer of fabricated U-10wt.%Zr-Xwt.%RE (X = 0, 5, 10) fuel slugs using injection casting. The results showed that the thickness of the surface reaction layer increased as the RE content of the metallic fuel slugs increased. The surface reaction layer of the metallic fuel slug was mainly formed by RE, Zr and the Si, which diffused in the quartz mold.
Go to article

This page uses 'cookies'. Learn more