Search results

Filters

  • Journals
  • Date

Search results

Number of results: 2
items per page: 25 50 75
Sort by:

Abstract

A new ultrasound digital transcranial Doppler system (digiTDS) is introduced. The digiTDS enables diagnosis of intracranial vessels which are rather difficult to penetrate for standard systems. The device can display a color map of flow velocities (in time-depth domain) and a spectrogram of a Doppler signal obtained at particular depth. The system offers a multigate processing which allows to display a number of spectrograms simultaneously and to reconstruct a flow velocity profile. The digital signal processing in digiTDS is partitioned between hardware and software parts. The hardware part (based on FPGA) executes a signal demodulation and reduces data stream. The software part (PC) performs the Doppler processing and display tasks. The hardware-software partitioning allowed to build a flexible Doppler platform at a relatively low cost. The digiTDS design fulfills all necessary medical standards being a new useful tool in the transcranial field as well as in heart velocimetry research.
Go to article

Abstract

Most systems used in quantum physics experiments require the efficient and simultaneous recording different multi-photon coincidence detection events. In such experiments, the single-photon gated counting systems can be applicable. The main sources of errors in these systems are both instability of the clock source and their imperfect synchronization with the excitation source. Below, we propose a solution for improvement of the metrological parameters of such measuring systems. Thus, we designed a novel integrated circuit dedicated to registration of signals from a photon number resolving detectors including a phase synchronizer module. This paper presents the architecture of a high-resolution (~60 ps) digital phase synchronizer module cooperating with a multi-channel coincidence counter. The main characteristic feature of the presented system is its ability to fast synchronization (requiring only one clock period) with the measuring process. Therefore, it is designed to work with various excitation sources of a very wide frequency range. Implementation of the phase synchronizer module in an FPGA device enabled to reduce the synchronization error value from 2.857 ns to 214.8 ps.
Go to article

This page uses 'cookies'. Learn more