Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 266
items per page: 25 50 75
Sort by:

Abstract

Hydrodynamic three tilting-pad journal bearing is analyzed in the paper. It is shown that, when assembling that type of not controlled bearing, it is impossible to obtain a small clearance between the pad and the journal at high frequency of journal rotation. In a static state, i.e. when the journal is immobile, such a bearing should be assembled with a large interference between the pads and the journal in order to guarantee the small clearance at rotation. At start, when the hydrodynamic lubricating wedges between the pads and journal are absent, the bearing would work with dry friction, resulting in quick wear of pads and high load of the drive motor. Apart of that, it is impossible to control the power consumption and temperature regime neither for idle nor for working rotation of the journal. The proposed automatic control gives a possibility to regulate the clearance between the pads and the journal by measuring and controlling the axial force of the pad load, and in such a way to improve work conditions of the bearing.
Go to article

Abstract

The Least Mean Square (LMS) algorithm and its variants are currently the most frequently used adaptation algorithms; therefore, it is desirable to understand them thoroughly from both theoretical and practical points of view. One of the main aspects studied in the literature is the influence of the step size on stability or convergence of LMS-based algorithms. Different publications provide different stability upper bounds, but a lower bound is always set to zero. However, they are mostly based on statistical analysis. In this paper we show, by means of control theoretic analysis confirmed by simulations, that for the leaky LMS algorithm, a small negative step size is allowed. Moreover, the control theoretic approach alows to minimize the number of assumptions necessary to prove the new condition. Thus, although a positive step size is fully justified for practical applications since it reduces the mean-square error, knowledge about an allowed small negative step size is important from a cognitive point of view.
Go to article

Abstract

The article is devoted to the development of technogenic risk management models and formalization of the process of support in making decision in the sphere of industrial safety. The structural, informative and mathematical models, used to process information in the technological risks management, as well as a formal model of the process of support of making decision in achieving an acceptable level of technical risk are presented and analyzed.
Go to article

Abstract

The paper presents some aspects of a development project related to Industry 4.0 that was executed at Nemak, a leading manufacturer of the aluminium castings for the automotive industry, in its high pressure die casting foundry in Poland. The developed data analytics system aims at predicting the casting quality basing on the production data. The objective is to use these data for optimizing process parameters to raise the products’ quality as well as to improve the productivity. Characterization of the production data including the recorded process parameters and the role of mechanical properties of the castings as the process outputs is presented. The system incorporates advanced data analytics and computation tools based on the analysis of variance (ANOVA) and applying an MS Excel platform. It enables the foundry engineers and operators finding the most efficient process variables to ensure high mechanical properties of the aluminium engine block castings. The main features of the system are explained and illustrated by appropriate graphs. Chances and threats connected with applications of the data-driven modelling in die casting are discussed.
Go to article

Abstract

The aim of this paper is to show that a real order generalization of the dissipative concepts is a useful tool to determine the stability (in the Lyapunov and in the input-output sense) and to design control strategies not only for fractional order non-linear systems, but also for systems composed of integer and fractional order subsystems (mixed-order systems). In particular, the fractional control of integer order system (e.g. PIλ control) can be formalized. The key point is that the gradations of dissipativeness, passivity and positive realness concepts are related among them. Passivating systems is used as a strategy to stabilize them, which is studied in the non-adaptive as well as in the adaptive case.
Go to article

Abstract

A sliding mode controller for the photovoltaic pumping system has been proposed in this paper. This system is composed of a photovoltaic generator supplying a three-phase permanent magnet synchronous motor coupled to a centrifugal pump through a three-phase voltage inverter. The objective of this study is to minimise the number of regulators and apply the sliding mode control by exploiting the specification of the field oriented control scheme (FOC). The first regulator is used to force the photovoltaic generator to operate at the maximum power point, while the second is used to provide the field oriented control to improve the system performance.The whole system is analysed and its mathematical model is done. Matlab is used to validate the performance and robustness of the proposed control strategy.
Go to article

Abstract

J.L. Hindmarsh, R.M. Rose introduced the concept of neuronal burst. In this paper, synchronization is investigated for the construction of a model of neuronal burst using backstepping control with recursive feedback. Synchronization for a model of neuronal bursting system is established using Lyapunov stability theory. The backstepping scheme is a recursive procedure that links the choice of a Lyapunov function with the design of a controller. The backstepping control method is effective and convenient to synchronize identical systems. Numerical simulations are furnished to illustrate and validate the synchronization result derived in this paper.
Go to article

Abstract

This paper investigates state estimation of linear time-invariant systems where the sensors and controllers are geographically separated and connected over limited capacity, additive white Gaussian noise (AWGN) communication channels. Such channels are viewed as dropout (erasure) channels. In particular, we consider the case with limited data rates, present a necessary and sufficient condition on the data rate for mean square observability over an AWGN channel. The system is mean square observable if the data rate of the channel is larger than the lower bound given. It is shown in our results that there exist the inherent tradeoffs among the limited data rate, dropout probability, and observability. An illustrative example is given to demonstrate the effectiveness of the proposed scheme.
Go to article

Abstract

This paper proposes a methodology based on installation cost for locating the optimal position of interline power flow controller (IPFC) in a power system network. Here both conventional and non conventional optimization tools such as LR and ABC are applied. This methodology is formulated mathematically based on installation cost of the FACTS device and active power generation cost. The capability of IPFC to control the real and reactive power simultaneously in multiple transmission lines is exploited here. Apart from locating the optimal position of IPFC, this algorithm is used to find the optimal dispatch of the generating units and the optimal value of IPFC parameters. IPFC is modeled using Power Injection (PI) model and incorporated into the problem formulation. This proposed method is compared with that of conventional LR method by validating on standard test systems like 5-bus, IEEE 30-bus and IEEE 118-bus systems. A detailed discussion on power flow and voltage profile improvement is carried out which reveals that incorporating IPFC into power system network in its optimal location significantly enhance the load margin as well as the reliability of the system.
Go to article

Abstract

With the continuous increase of output power ratings, multi-phase (multichannel) interleaved power factor corrector (IPFC) is gradually employed in domestic and commercial inverter air-conditioners. IPFC can solve several main problems, such as power rating increase, power device selection, input current ripple reduction as well as inductor on-board mounting. But for a multi-phase IPFC, the key problem is that it should show rapid dynamic responds and good current sharing capability, so in this paper the aim is to improve the dynamic performance and current sharing capability by means of passivity control theory. Considering the power circuit topology of a four-phase IPFC, an EL (Euler-Lagrange) mathematical model is established when the IPFC operates in continuous conduction mode (CCM). Then the passivity of the four-phase IPFC is proved, and the passivity-based controller using the state variables feedback and damping injection method is designed. The proposed control scheme, which is easy to control and needs no proportion integral controller, has strong robustness on disturbance from singlephase AC input voltage, the load as well as the parameters of the employed devices. Even in wide-range load condition, the mains current has a fast dynamic response and the average output voltage almost keep unchanged. As a result, the main functions of the four-phase IPFC are implemented including nearly unitary power factor and constant DC output voltage. Meanwhile, the four-phase IPFC acquires an excellent current sparing effect after using passivity-based controller. The above analysis has been proved with simulated results by means of MATLAB/SIMULINK and experimental results, showing that the passivity-based IPFC controller has superior performances and feasibility.
Go to article

Abstract

The paper presents the mathematical models of dual stator squirrel-cage induction motor, formulated in phase coordinate system and in general transformed space vector form. The two types of models of dual stator induction motor are considered. The control systems of field-oriented control (IFOC and DFOC) and direct torque control (DTC) of the dual stator induction motor have been described and discussed.
Go to article

Abstract

It has been proposed that a novel maglev transport system uses both of the attractive force and thrust force of the Linear Induction Motor (LIM). In our proposal, these two forces will be controlled by two different frequency components. One of the frequency components is synchronous with the motor speed (fm). Another frequency component is drive frequency (fd). Our proposed system enables the independent and simultaneous control of the attractive and thrust force of LIM. Each value of the attractive and the thrust force generated by fm and fd must be identified in order to design that LIM control system. For these purpose, a disc-shaped LIM has been developed as an experimental equipment. The force profiles, especially around zero slip, have been analyzed under experimental conditions.
Go to article

Abstract

In this paper the MTPA, MTPF, constant torque and constant flux control trajectories are presented. These trajectories are calculated for a 6-phase asymmetric insettype SMPMSM generator with the assumption of a certain level of 3rd harmonic current injection. This injection technique increases the generator performance due to the cooperation of the fundamental and 3rd harmonic. The presented trajectories are used for fast control of the generator working in the gearless wind turbine system.
Go to article

Abstract

Conventional field-orientated Induction motor drives operate at rated flux even at low load. To improve the efficiency of the existing motor it is important to regulate the flux of the motor in the desired operating range. In this paper a loss model controller (LMC) based on the real coded genetic algorithm is proposed, it has the straightforward goal of maximizing the efficiency for each given load torque. In order to give more accuracy to the motor model and the LMC a series model of the motor which consider the iron losses as a resistance connected in series with the mutual inductance is considered. Digital computer simulation demonstrates the effectiveness of the proposed algorithm and also simulation results have confirmed that this algorithm yields the optimal efficiency.
Go to article

Abstract

This paper presents the results on the effects of die-casting process on the strength parameters of castings of the aluminium AlSi9Cu3 alloy belonging to the group of EN AB-46000, made on renovated high pressure die-casting machine. Specimens for quality testing were taken from the places of the casting most loaded during the service. The aim of a research was to prove how the new die-casting process control capabilities influence on the tensile strength of the cast material defined as a value of the breaking force of the specimens. It has been found that it is possible to specify a set of recommended settings valves of second (II) and third (III) phase, which are responsible for filling the metal mould on die-casting pressure machine. From the point of view of the finished cast element, it was noticed that exceeding the prescribed values of valve settings does not bring further benefits and even causes unnecessary overload and reduce the durability of the mold. Moreover, it was noticed that reduction of the predetermined setting of the second phase (II) valve leads to the formation of casting defects again.
Go to article

Abstract

Achieving control of coating thickness in foundry moulds is needed in order to guarantee uniform properties of the mould but also to achieve control of drying time. Since drying time of water based coatings is heavily dependent on the amount of water present in the coating layer, a stable coating process is prerequisite for a stable drying process. In this study, we analyse the effect of different variables on the coating layer properties. We start by considering four critical variables identified in a previous study such as sand compaction, coating density, dipping time and gravity and then we add centre points to the original experimental plans to identify possible non-linear effects and variation in process stability. Finally, we investigate the relation between coating penetration (a variable that is relatively simple to measure in production) and other coating layer thickness properties (relevant for the drying process design). Correlations are found and equations are provided. In particular it is found that water thickness can be directly correlated to penetration with a simple linear equation and without the need to account for other variables.
Go to article

Abstract

Foundry resistance furnaces are thermal devices with a relatively large time delay in their response to a change in power parameters. Commonly used in automation classical PID controllers do not meet the requirements of high-quality control. Developed in recent years, fuzzy control theory is increasingly being used in various branches of economy and industry. Fuzzy controllers allow to introduce new developments in control systems of foundry furnaces as well. Correctly selected fuzzy controller can significantly reduce energy consumption in a controlled thermal process of heating equipment. The article presents a comparison of energy consumption by control system of foundry resistance furnace, equipped with either a PID controller or fuzzy controller optimally chosen.
Go to article

Abstract

In a PV-dominant DC microgrid, the traditional energy distribution method based on the droop control method has problems such as output voltage drop, insufficient power distribution accuracy, etc. Meanwhile, different battery energy storage units usually have different parameters when the system is running. Therefore, this paper proposes an improved control method that introduces a reference current correction factor, and a weighted calculation method for load power distribution based on the parameters of battery energy storage units is proposed to achieve weighted allocation of load power. In addition, considering the variation of bus voltage at the time of load mutation, voltage secondary control is added to realize dynamic adjustment of DC bus voltage fluctuation. The proposed method can achieve balance and stable operation of energy storage units. The simulation results verified the effectiveness and stability of the proposed control strategy.
Go to article

Abstract

The paper presents preliminary results of investigations on a relationship between turbidity and other quality parameters in the SBR plant effluent. The laboratory tests demonstrated a high correlation between an effluent turbidity and a total suspended solids (TSS) concentration as well as between TSS and COD. Such a relationship would help to continuously monitor and control quality of a wastewater discharge using turbidity measurement.
Go to article

Abstract

A method for modeling of the dynamics characteristics for a 5-phase permanent magnet tubular linear motor (PMTLM) is presented. Its electromagnetic nonlinear field analysis with finite element method (FEM) has been coupled with the circuit model. The calculation model includes the equations for electrical circuits and mechanical quantities as well. They have been obtained using Lagrange's method. The calculated and measured waves of the mover position have been compared for several values of the excitation current. This comparison yields a good agreement. Presented calculation model is very useful in designing and optimization of the PMTLM and in the calculation of the parameters for the control algorithms intended for such a type of actuators.
Go to article

Abstract

This paper describes multiple electric field control methods for foil coils in high-voltage coreless linear actuators and their sensitivity to misalignment. The investigated field control methods consist of resistive, refractive, capacitive and geometrical solutions for mitigating electric stress at edges and corners of foil coils. These field control methods are evaluated using 2-D boundary element and finite element methods. A comparison is presented between the field control methods and their ability to mitigate electric stress in coreless linear actuators. Furthermore, the sensitivity to misalignment of the field control methods is investigated.
Go to article

Abstract

The mathematical model of the five-phase squirrel-cage induction motor and the system of the dual five-phase voltage source inverter have been presented. The control methods and control systems of the field-oriented control of the five-phase induction motor with an open-end stator winding are described. The structures of the direct fieldoriented control system (DFOC) and the Indirect Field-oriented control system (IFOC) with PI controllers in outer and inner control loops are analyzed. A method of space vector modulation used to control the system of the dual five-phase voltage source inverter has been discussed. The results of simulation studies of the field-oriented control methods are presented. Comparative analysis of the simulation results was carried out.
Go to article

Abstract

In this study, non-sintered ceramsite was prepared using coal gasification coarse slag obtained from a methanol plant. The basic performance and heavy metal leaching toxicity were analyzed. The results showed that seven out of nine non-sintered ceramsite groups were in accordance with the national standard of compressive strength (5 MPa), while only three groups met the national standard of water absorption index of less than 22%. The heavy metal concentrations in these three groups were found to be lower than that specified in National Class IV of surface water environment standards. The concentration of Cr was found to be 16.45 μg/L, which represents only 1% of the IV standard. The optimum mixing ratio, which showed high compressive strength (6.76 MPa) and low water absorption (20.12%), was found to be 73% coal gasification coarse slag, 15% cement, and 12% quartz sand. The characterization using Fourier transform infrared spectroscopy showed that the formation of gelatin in ceramsite enhances the performance of the ceramsite base and increases the immobilization of heavy metal. The study proved that the preparation of non-sintered ceramsite using coal gasification coarse slag reduces its environmental risk and achieves efficient utilization of the slag. Therefore, it can be concluded that it is a feasible and environmental friendly method for the disposal of coal slag.
Go to article

Abstract

This paper presents an adaptive particle swarm optimization (APSO) based LQR controller for optimal tuning of state feedback controller gains for a class of under actuated system (Inverted pendulum). Normally, the weights of LQR controller are chosen based on trial and error approach to obtain the optimum controller gains, but it is often cumbersome and tedious to tune the controller gains via trial and error method. To address this problem, an intelligent approach employing adaptive PSO (APSO) for optimum tuning of LQR is proposed. In this approach, an adaptive inertia weight factor (AIWF), which adjusts the inertia weight according to the success rate of the particles, is employed to not only speed up the search process but also to increase the accuracy of the algorithm towards obtaining the optimum controller gain. The performance of the proposed approach is tested on a bench mark inverted pendulum system, and the experimental results of APSO are compared with that of the conventional PSO and GA. Experimental results prove that the proposed algorithm remarkably improves the convergence speed and precision of PSO in obtaining the robust trajectory tracking of inverted pendulum.
Go to article

Abstract

Brushless DC motors are often used as the power sources for modern ship electric propulsion systems. Due to the electromagnetic torque ripple of the motor, the traditional control method reduces the drive performance of the motor under load changes. Aiming at the problem of the torque ripple of the DC brushless motor during a non- commutation period, this paper analysis the reasons for the torque ripple caused by pulse- width modulation (PWM), and proposes a PWM_ON_PWM method to suppress the torque ripple of the DC brushless motor. Based on the mathematical model of a DC brushless motor, this method adopts a double closed-loop control method based on fuzzy control to suppress the torque ripple of the DC brushless motor. The fuzzy control technology is integrated into the parameter tuning process of the proportional–integral–derivative (PID) controller to effectively improve the stability of the motor control system. Under the Matlab/Simulink platform, the response performance of different PID control methods and the torque characteristics of different PWM modulation methods are simulated and compared. The results show that the fuzzy adaptive PID control method has good dynamic response performance. It is verified that the PWM_ON_PWM modulation method can effectively suppress the torque ripple of the motor during non-commutation period, improve the stability of the double closed-loop control system and meet the driving performance of the motor under different load conditions.
Go to article

This page uses 'cookies'. Learn more