Search results

Filters

  • Journals
  • Date

Search results

Number of results: 11
items per page: 25 50 75
Sort by:

Abstract

The paper presents results of compressive strength investigations of EN AC-44200 based aluminum alloy composite materials reinforced with aluminum oxide particles at ambient and at temperatures of 100, 200 and 250C. They were manufactured by squeeze casting of the porous preforms made of α-Al2O3 particles with liquid aluminum alloy EN AC-44200. The composite materials were reinforced with preforms characterized by the porosities of 90, 80, 70 and 60 vol. %, thus the alumina content in the composite materials was 10, 20, 30 and 40 vol.%. The results of the compressive strength of manufactured materials were presented and basing on the microscopic observations the effect of the volume content of strengthening alumina particles on the cracking mechanisms during compression at indicated temperatures were shown and discussed. The highest compressive strength of 470 MPa at ambient temperature showed composite materials strengthened with 40 vol.% of α-Al2O3 particles.
Go to article

Abstract

We fabricated two different kinds of composite materials for absorbing microwave in a frequency range of 2 to 18 GHz using coaxial airline and thru-reflect-line (TRL) method. The composite materials having carbon nanotube (CNT) with carbonyl iron (CI) or iron oxide (Fe3O4) were fabricated by mixing each components. Magnetic properties were measured by SQUID equipment. Complex permittivity and complex permeability were also obtained by measuring S-parameters of the toroidal specimen dispersing CI/CNT and Fe3O4/CNT into the 50 weight percent (wt%) epoxy resin. The real permittivity was improved by mixing the CNT however, the real permeability was same as pure magnetic powders. The CI/CNT had a maximum value of real permittivity and real permeability, 11 and 1.4 at 10 GHz, respectively. The CNT composites can be adapted to the radar absorbing materials, band width 8-12 GHz.
Go to article

Abstract

This paper presents an estimation of performances by tests on composite material structures. In order to evaluate the effects on the structural behavior, tests changing the percentage of orientation of the fiber at 0, 45 and 90 degrees and mixing the unidirectional plies with the fabric ones have been done. Fixed the lay-up configuration and so the stacking sequence, two typology of structures have been analyzed; the first one having only unidirectional plies while the second one having a fabric ply (plain weave 0/90) in place of the top and bottom unidirectional plies. The openhole compressive strength and the filled-hole tensile strength and moduli have been characterized by test. A total of 72 specimens have been used in the test campaign. In order to well compare the test results a Performance Weight Index (PWI) has been introduced by authors in order to normalize the strength of each laminate with respect to its weight/unit of surface. Results and different laminate behaviors have been evaluated and discussed.
Go to article

Abstract

This paper presents technological trials aimed at producing Ag-W, Ag-WC, Ag-W-C and Ag-WC-C composite contact materials and characterizing their properties. These materials were obtained using two methods, i.e. press-sinter-repress (PSR) at the refractory phase content of less than 30% by weight as well as press-sinter-infiltration (PSI) at the refractory phase content of ≥50% by weight). The results of research into both the physical and electrical properties of the outcome composites were shown. They include the analysis of the influence of the refractory phase content (W or WC) on arc erosion and contact resistance changes for the following current range: 6 kAmax in the case of composites with a low refractory phase content, 10 kAmax in the case of composites with the refractory phase content of ≥50% by weight.
Go to article

Abstract

The paper presents results of bend tests at elevated temperatures of aluminium alloy EN AC-44200 (AlSi12) based composite materials reinforced with aluminium oxide particles. The examined materials were manufactured by squeeze casting. Preforms made of Al2O3 particles, with volumetric fraction 10, 20, 30 and 40 vol.% of particles joined with sodium silicate bridges were used as reinforcement. The preforms were characterised by open porosity ensuring proper infiltration with the EN AC-44200 (AlSi12) liquid alloy. The largest bending strength was found for the materials containing 40 vol.% of reinforcing ceramic particles, tested at ambient temperature. At increased test temperature, bending strength Rg of composites decreased in average by 30 to 50 MPa per 100°C of temperature increase. Temperature increase did not significantly affect cracking of the materials. Cracks propagated mainly along the interfaces particle/matrix, with no effect of the particles falling-out from fracture surfaces. Direction of cracking can be affected by a small number of agglomerations of particles or of non-reacted binder. In the composites, the particles strongly restrict plastic deformation of the alloy, which leads to creation of brittle fractures. At elevated temperatures, however mainly at 200 and 300°C, larger numbers of broken, fragmented particles was observed in the vicinity of cracks. Fragmentation of particles occurred mainly at tensioned side of the bended specimens, in the materials with smaller fraction of Al2O3 reinforcement, i.e. 10 and 20 vol.%.
Go to article

Abstract

The paper presents a study of a possible application of structure embedded piezoelectric actuators to enhance the performance of a rotating composite beam exhibiting the coupled flexural-flexural vibrations. The discussed transversal and lateral bending modal coupling results from the directional properties of the beam's laminate and ply stacking distribution. The mathematical model of the beam is based on an assumption of cross-sectional non-deformability and it incorporates a number of non-classical effects. The final 1-D governing equations of an active composite beam include both orthotropic properties of the laminate and transversely isotropic properties of piezoelectric layers. The system's control capabilities resulting from embedded Macro Fiber Composite piezoelectric actuators are represented by the boundary bending moment. To enhance the dynamic properties of the composite specimen under consideration a combination of linear proportional control strategies has been used. Comparison studies have been performed, including the impact on modal coupling magnitude and cross-over frequency shift.
Go to article

Abstract

The present paper is devoted to the discussion and review of the non-destructive testing methods mainly based on vibration and wave propagation. In the first part, the experimental methods of actuating and analyzing the signal (vibration) are discussed. The piezoelectric elements, fiber optic sensors and Laser Scanning Doppler Vibrometer (SLDV) method are described. Effective detecting of the flaws needs very accurate theoretical models. Thus, the numerical methods, e.g. finite element, spectral element method and numerical models of the flaws in isotropic and composite materials are presented. Moreover, the detection of the damage in structures, which are subjected to cyclic or static loads, is based on the analyzing of the change in natural frequency of the whole structure, the change of internal impedance of the material and the change in guided waves propagating through the investigated structure. All these cases are characterized in detail. At the end of this paper, several applications of the structural health monitoring systems in machine design and operation are presented.
Go to article

Abstract

Ceramic injection moulding and gas pressure infiltration were employed for the manufacturing of alumina/AlSi10Mg composites. Porous ceramic preforms were prepared by mixing alumina powder with a multi-binder system and injection moulding of the powder polymer slurry. Then, the organic part was removed through a combination of solvent and thermal debinding, and the materials were finally sintered at different temperatures. The ceramic preforms manufactured in this way were infiltrated by an AlSi10Mg alloy. The microstructure and properties of the manufactured materials were examined using scanning electron microscopy, mercury porosimetry and bending strength testing. The results of transmission electron microscopy and scanning electron microscopy observations show that the fabricated composite materials are characterised by the percolation type of the microstructure and a lack of unfilled pores with good cohesion at the metal-ceramic interfaces. This is surprising considering that over 30% of the pores are smaller than 1 μm. The results show that the bending strength of the obtained composites decreased with increasing sintering temperature of the porous preforms.
Go to article

Abstract

Owing to its properties, metallic foams can be used as insulation material. Thermal properties of cast metal-ceramic composite foams have applications in transport vehicles and can act as fire resistant and acoustic insulators of bulkheads. This paper presents basic thermal properties of cast and foamed aluminum, the values of thermal conductivity coefficient of selected gases used in foaming composites and thermal capabilities of composite foams (AlSi11/SiC). A certificate of non-combustibility test of cast aluminum-ceramic foam for marine applications was included inside the paper. The composite foam was prepared by the gas injection method, consisting in direct injection of gas into liquid metal. Foams with closed and open cells were examined. The foams were foaming with foaming gas consisting of nitrogen or air. This work is one of elements of researches connected with description of properties of composite foams. In author's other works acoustic properties of these materials will be presented.
Go to article

Abstract

The presented work deals with the influence of the addition of soft graphite particles on the abrasive wear of composite reinforced with hard SiC particles. The discussed hybrid composites were produced by stirring the liquid alloy and simultaneous adding the mixture of particles. The adequately prepared suspension was gravity cast into a metal die. Both the composite castings obtained in this way and the comparative castings produced of the pure matrix alloy were examined for the abrasive wear behaviour. Photomacrographs of the sliding surfaces of the examined composites were taken, and also the hardness measurements were carried out. It was found that even a small addition of Cgr particles influences positively the tribological properties of the examined composite materials, protecting the abraded surface from the destructive action of silicon carbide particles. The work presents also the results of hardness measurements which confirm that the composite material hardness increases with an increase in the volume fraction of hard reinforcing particles.
Go to article

Abstract

There were two aims of the research. One was to enable more or less automatic confirmation of the known associations – either quantitative or qualitative – between technological data and selected properties of concrete materials. Even more important is the second aim – demonstration of expected possibility of automatic identification of new such relationships, not yet recognized by civil engineers. The relationships are to be obtained by methods of Artificial Intelligence, (AI), and are to be based on actual results from experiments on concrete materials. The reason of applying the AI tools is that in Civil Engineering the real data are typically non perfect, complex, fuzzy, often with missing details, which means that their analysis in a traditional way, by building empirical models, is hardly possible or at least can not be done quickly. The main idea of the proposed approach was to combine application of different AI methods in a one system, aimed at estimation, prediction, design and/or optimization of composite materials. The paradigm of the approach is that the unknown rules concerning the properties of concrete are hidden in experimental results and can be obtained from the analysis of examples. Different AI techniques like artificial neural networks, machine learning and certain techniques related to statistics were applied. The data for the analysis originated from direct observations and from reports and publications on concrete technology. Among others it has been demonstrated that by combining different AI methods it is possible to improve the quality of the data, (e.g. when encountering outliers and missing values or in clustering problems), so that the whole data processing system will be giving better prediction, (when applying ANNs), or the newly discovered rules will be more effective, (e.g. with descriptions more complete and – at the same time – possibly more consistent, in case of ML algorithms).
Go to article

This page uses 'cookies'. Learn more