Search results

Filters

  • Journals
  • Date

Search results

Number of results: 2
items per page: 25 50 75
Sort by:

Abstract

It was found that the addition of carbon fibers (CFs) does not affect the crosslinking process in the microwave radiation (800 W, 2.45 GHz) of the BioCo2 binder, which is a water solution of poly(acrylic acid) and dextrin (PAA/D). It has influence on BioCo2 thermal properties. The CFs addition improves the thermostability of a binder and leads to the reduction of gas products quantity generated in the temperature range of 300-1100°C (TG-DTG, Py-GC/MS). Moreover, it causes the emission of harmful decomposition products such as benzene, toluene, xylene and styrene to be registered in a higher temperatures (above 700°C). BioCo2 binder without CFs addition is characterized by the emission of these substances in the lower temperature range. This indicates the positive effect of carbon fibers presence on the amount of released harmful products. The selected technological tests (permeability, friability, bending strength, tensile strength) have shown that the moulding sand with the 0.3 parts by weight carbon fibers addition displays the worst properties. The addition of 0.1 parts by weight of CFs is sufficient to obtain a beneficial effect on the analyzed moulding sands properties. The reduction of harmful substances at the higher temperatures can also be observed.
Go to article

Abstract

The paper presents the application of similarity theory to investigations of transient heat transfer in materials with complex structure. It describes the theoretical-experimental method for identification and design of the structure of two-component composite walls based on the research of the thermal diffusivity for the composite and its matrix separately. The thermal diffusivity was measured by means of the modified flash method. The method was tested on two samples of double-layer ‘epoxy resin – polyamide’. All the investigated samples had the same diameter of 12 mm and thickness ranging from 1.39–2.60 mm and their equivalent value of thermal diffusivity ranging from (1.21–1.98)×10-7m2/s. Testing the method and research on carbon/epoxy composites was carried out at temperatures close to room temperature.
Go to article

This page uses 'cookies'. Learn more