Search results

Filters

  • Journals
  • Date

Search results

Number of results: 3
items per page: 25 50 75
Sort by:

Abstract

The paper presents an algorithm and software for the optimal design of permanent magnet brushless DC motors. Such motors are powered by DC voltage sources via semiconductor switches connected to the motor phase belts. The software is adjusted to the design of motors with NdFeB high energy density magnets. An attention has been given to issues important in the design of the motors, i.e., permanent magnet selection, structure of magnetic circuit, and armature windings. Particularly, precision of calculation of the permanent magnet operating point, visualization of selection process of the winding belts, and magnetic circuit dimensioning have been investigated. The authors have been trying to make the equations more specific and accurate than those presented in the literature. The user software interface allows changes in the magnetic circuit dimensions, and in the winding parameters. It is possible to examine simultaneously the influence of these changes on the calculation results. The software operates both with standard and inverted (outer rotor) motor structure. To perform optimization, a non-deterministic method based on the evolution strategy (ž + λ) - ES has been used.
Go to article

Abstract

This paper aims at providing a framework for comprehensive steady-state time-domain analysis of rotating machines considering motion. The steady-state waveforms of electromagnetic and circuit quantities are computed via iterative solution of the nonlinear field-circuit-and-motion problem with constraints of time periodicity. The cases with forced speed and forced load torque are considered. A comparison of execution times with a conventional time-stepping transient model is carried out for two different machines. The numerical stability of a time-periodic model with forced speed is shown to be worse than that of traditional transient time-stepping one, although the model converges within a reasonable number of iterations. This is not the case if forced load via equation of mechanical balance is accounted for. To ensure convergence of the iterative process the physical equation of motion is replaced by the fixed-point equation. In this way the model delivers time-periodic solutions regarding not only the electromagnetic quantities but also the rotational speed.
Go to article

Abstract

An analysis of the influence of inverter PWM speed control methods on the operation of a brushless DC (BLDC) motor was carried out. Field-circuit models of the BLDC motor were developed taking into account rotational speed control by two classic methods: the unipolar H_ON_L_PWM and the bipolar H_PWM_L_PWM. Waveforms of the electrical and mechanical quantities and the motor parameters were computed. The results of the computations were verified by measurements performed on a specially designed test stand. On the basis of the measuredwaveforms of the electrical and mechanical quantities the dependence of the drive system efficiencies and power losses on rotational speed was determined for the two methods of inverter control.
Go to article

This page uses 'cookies'. Learn more