Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 80
items per page: 25 50 75
Sort by:

Abstract

This paper proposes a new approach for calculating the impulse response of room acoustics. Impulse response provides unique characterization of any discrete lineartime invariant (LTI) systems. We assume that the room is a linear time-invariant system and the impulse response is calculated simply by sending a Dirac Impulse into the system as input and getting the response from the output. Then, the output of the system is represented as a sum of time-shifted weighted impulse responses. Both mathematical justifications for the proposed method and results from simulation software developed to evaluate the proposed approach are presented in detail.
Go to article

Abstract

The goal of this research is to find a set of acoustic parameters that are related to differences between Polish and Lithuanian language consonants. In order to identify these differences, an acoustic analysis is performed, and the phoneme sounds are described as the vectors of acoustic parameters. Parameters known from the speech domain as well as those from the music information retrieval area are employed. These parameters are time- and frequency-domain descriptors. English language as an auxiliary language is used in the experiments. In the first part of the experiments, an analysis of Lithuanian and Polish language samples is carried out, features are extracted, and the most discriminating ones are determined. In the second part of the experiments, automatic classification of Lithuanian/English, Polish/English, and Lithuanian/Polish phonemes is performed.
Go to article

Abstract

Excitation of the entropy mode in the field of intense sound, that is, acoustic heating, is theoretically considered in this work. The dynamic equation for an excess density which specifies the entropy mode, has been obtained by means of the method of projections. It takes the form of the diffusion equation with an acoustic driving force which is quadratically nonlinear in the leading order. The diffusion coefficient is proportional to the thermal conduction, and the acoustic force is proportional to the total attenuation. Theoretical description of instantaneous heating allows to take into account aperiodic and impulsive sounds. Acoustic heating in a half-space and in a planar resonator is discussed. The aim of this study is to evaluate acoustic heating and determine the contribution of thermal conduction and mechanical viscosity in different boundary problems. The conclusions are drawn for the Dirichlet and Neumann boundary conditions. The instantaneous dynamic equation for variations in temperature, which specifies the entropy mode, is solved analytically for some types of acoustic exciters. The results show variation in temperature as a function of time and distance from the boundary for different boundary conditions.
Go to article

Abstract

Ultrasonic processing in the cavitation mode is used to produce the composite materials based on the metal matrix and reinforcing particles of micro- and nano-sizes. In such a case, the deagglomeration of aggregates and the uniform distribution of particles are the expected effects. Although the particles can not only fragment in the acoustic field, they also can coagulate, coarsen and precipitate. In this paper, a theoretical study of processes of deagglomeration and coagulation of particles in the liquid metal under ultrasonic treatment is made. The influence of various parameters of ultrasound and dispersion medium on the dynamics of particles in the acoustic field is considered on the basis of the proposed mathematical model. The criterion of leading process (coagulation or deagglomeration) has been proposed. The calculated results are compared with the experimental ones known from the scientific literature.
Go to article

Abstract

Nowadays, resonators are widely used in automobile, industrial applications, aerospace engineering, and some other fields. One of the unique characteristics of resonators which made them highly convenient is their acoustic capability to attenuate noise without having to use any acoustic absorptive material. The device acts by manipulating the sound waves to create mismatch impedance. Recent studies also suggest that the typical bulk size resonator with narrow frequency bandwidth is not the only option anymore, since there are newly designed resonators that are capable of having wide attenuation bandwidth and are smaller in size. Numerical and experimental measures were executed accordingly with the same purpose to obtain efficient noise attenuation results from varying resonators’ and mufflers’ configuration in terms of quantity, types, and geometry. The aim of this review is to summarize recent developments on resonator study and to try highlighting some noteworthy issues that need to be unraveled by future research. Helmholtz resonator, Quarter wave tube, Herschel-Quincke tube and helicoidal resonator are part of the numerous resonator studies that will be covered in this paper.
Go to article

Abstract

In recent years we have interviewed members of the audience after musical performances and asked them to evaluate the acoustics of the concert halls. A group of ‘music lovers’ (with a high level of musical training and experience) and ‘acousticians’ (with a wide knowledge of the physical characteristics of sound transmission) also attended each performance and answered the same questions as the general public. This group thereby served as a control group when evaluating surveys of the general public. In this paper, the results obtained when analyzing these control group surveys are presented. This analysis shows that a common vocabulary exists between music lovers and acousticians when rating a hall, although the grouping of the questions for each factor depends on the training of the respondents.
Go to article

Abstract

For the purpose of making of a solid body of an electric guitar the acoustic- and mechanical properties of walnut- (Juglans regia L.) and ash wood (Fraxinus excelsior L.) were researched. The acoustic properties were determined in a flexural vibration response of laboratory conditioned wood elements of 430 × 186 × 42.8 mm used for making of a solid body of an electric guitar. The velocity of shearand compression ultrasonic waves was additionally determined in parallel small oriented samples of 80 × 40 × 40 mm. The research confirmed better mechanical properties of ash wood, that is, the larger modulus of elasticity and shear modules in all anatomical directions and planes. The acoustic quality of ash wood was better only in the basic vibration mode. Walnut was, on the other hand, lighter and more homogenous and had lower acoustic- and mechanical anisotropy. Additionally, reduced damping of walnut at higher vibration modes is assumed to have a positive impact on the vibration response of future modelled and built solid bodies of electric guitars. When choosing walnut wood, better energy transfer is expected at a similar string playing frequency and a structure resonance of the electric guitar.
Go to article

Abstract

The church of Santa Cruz de Oleiros, Spain (1967) shows architect Miguel Fisac’s perception of sacred space after the Second Vatican Council. In this place of worship, the architect responded to the new liturgical guidelines combining geometry and architectural forms with the material of the moment, concrete. However, ordinary religious celebrations reveal acoustic deficiencies for the main use of the building. This fact is corroborated by acoustic measurements in situ. With a methodology that uses simulation techniques for the sound field, the analysis of the current acoustic behaviour of the room will serve as the basis for an acoustic rehabilitation proposal aimed at improving the acoustic conditions and so, the functionality of the church.
Go to article

Abstract

The church of Santa Ana in Moratalaz, Madrid, Spain (1965-1971), is an emblematic work of the architect Miguel Fisac. In his long career include interventions in the religious field, constituting one of the most important contributions to Spanish religious architecture of the last century. This church is a singular place of worship and architecturally significant, in which the acoustics played an important role in the configuration of the spatiality of the church. This paper studies the acoustic behaviour of the church and its relationship with its unique structural, spatial and coating material characteristics. The analysis of the current acoustic conditions, with high reverberation times (up to 6 seconds) and poor intelligibility on the audience, serve as the basis for making an acoustic rehabilitation proposal that contributes to improving the sound conditions of the building for the intended use, without distorting the spatial, formal and material aspects with which the architect conceived the project.
Go to article

Abstract

Several authors have proposed indices to synthesize the acoustics of a space, especially of concert halls. Meanwhile, a few studies have focused on the acoustics of worship spaces. The peculiarities of these last ones have shown distinctive characteristics. The increasing interest for the acoustics of worship spaces justifies the formulation of indices to synthesize the results of acoustic studies in these buildings too. This paper proposes a double synthetic index to evaluate the acoustics of a church. The index is obtained combining the average values of seven parameters generally considered in studies of architectural acoustics. The differences between requirements for music and speech in churches suggest to consider different optimal values of the selected parameters for different kinds of sound. A double synthetic index has been defined to synthesize the acoustical properties related to the music and to the speech separately. The validity of this double index is then assessed, comparing its values with subjective preferences captured through listening tests. The index, which is proposed and validated in this paper, aims to be an instrument to show synthetically the acoustical characteristics of a church to people with low knowledge in acoustics.
Go to article

Abstract

Biography and scientific achievements of Academician Leonid Maksimovich Brekhovskikh - Russian physicist, the founder of the scientific school of Ocean Acoustics, Doctor of Physics and Mathematics Sciences, Professor, Academician of the Russian Academy of Sciences.
Go to article

Abstract

This paper presents the interior acoustical characterization of the 9,000-seat church of the Holy Trinity in the Sanctuary of Fátima, Portugal, inaugurated in 2007. In situ measurements were held regarding interior sound pressure levels (with and without the HVAC equipment working), NC curves, RASTI (with and without the installed sound system) and reverberation time. The results are presented and commented according to the design values. A comparison is made with other churches in the world, also with a very large volume (for instance the Basilica Mariacka in Gdańsk). The measured data are also used to calculate a global index of this church acoustic quality using Engel's and Kosała's Index Method.
Go to article

Abstract

The purpose of the study was to compare auditory judgments of sound clarity of music examples recorded in a concert hall with predictions of clarity made from the impulse response signal recorded in the same hall. Auditory judgments were made with the use of two methods: by rating sound clarity on a numerical scale with two endpoints, and by absolute magnitude estimation. Results obtained by both methods were then compared against the values of clarity indices, C80 and C50, determined from the impulse response of the concert hall, measured in places in which the microphone was located during recording of music examples. Results show that auditory judgments of sound clarity and predictions made from the C80 index yield a similar rank order of data, but the relation between the C80 scale and perceived sound clarity is nonlinear. The data also show that the values of C80 and C50 indices are in very close agreement.
Go to article

Abstract

Active acoustics offers potential benefits in music halls having acoustical short-comings and is a relatively inexpensive alternative to physical modifications of the enclosures. One critical benefit of active architecture is the controlled variability of acoustics. Although many improvements have been made over the last 60 years in the quality and usability of active acoustics, some problems still persist and the acceptance of this technology is advancing cautiously. McGill's Virtual Acoustic Technology (VAT) offers new solutions in the key areas of performance by focusing on the electroacoustic coupling between the existing room acoustics and the simulation acoustics. All control parameters of the active acoustics are implemented in the Space Builder engine by employing multichannel parallel mixing, routing, and processing. The virtual acoustic response is created using low-latency convolution and a three-way temporal segmentation of the measured impulse responses. This method facilitates a sooner release of the virtual room response and its radiation into the surrounding space. Field tests are currently underway at McGill University involving performing musicians and the audience in order to fully assess and quantify the benefits of this new approach in active acoustics.
Go to article

Abstract

Currently used procedures in room acoustics measurements are not automated. Particularly in medium-sized and large areas they require a lot of time and intensive labour which directly translates into an increase in the measurement cost. Introduction of an automated system would increase efficiency of the measurements, and therefore could present both practical and scientific benefit. The paper presents initial feasibility study for designing a system that permits the measurement of selected acoustic parameters for any choice of three-dimensional grid of measurement points throughout the volume of the room. The system will utilize an autonomous probe attached to a blimp, and will be able to measure and analyze acoustic characteristics of the rooms. The article discusses the initial choices of the system elements, starting from the general idea, through the mechanical design and control procedures, the software that controls positioning and flying of the probe, up to the automation of the measurement procedure and its possible impact on the acoustic field.
Go to article

Abstract

Reflecting structures placed over the stage in auditoria and concert halls should provide sound reflection in a way that enhances sound emission from the stage without causing acoustic defects in the interior. Model studies conducted by the authors were used to determine the relative level of sound reflection by reflecting structures as a function of frequency for a number of geometric configurations and materials. Analysis of the results allowed drawing conclusions about the effect of modifications of the ceiling over the reflecting panels on the quality of the sound reflected from them. It was shown that modification of the ceiling over the reflecting panels by employing highly sound absorbing materials significantly improved the characteristics of the reflected sound. Also, certain configurations of elements located in the space under the ceiling should be avoided, as the experiments indicated the occurrence of adverse acoustic effects.
Go to article

Abstract

In this article some key events concerning founding Polish Section of the Audio Engineering Society were presented. In addition, the history covering International Symposia on Sound Engineering and Mastering was outlined. Also, papers contained in this issue were shortly reviewed.
Go to article

Abstract

Organologic and campanologic acoustical problems due to applications to sacral objects are characterized on ground of numerous reviewed publications and engineering reports. Participation of several involved research centres, mostly Polish, at solving these problems is evaluated. Some desirable future developments are indicated. Appendices bring examples of documentation on selected investigated objects.
Go to article

Abstract

Acoustic parameters were analysed in nine auditoria and multi-purpose conference rooms in the University of Extremadura. Parameters related to the reverberation time, background noise, and intelligibility (both physical measurements of different parameters [Definition (D-50) and STI] and speech tests used to study the subjective response of listeners) were studied. The measurements were compared with some recommendations from the literature and, considering that speech was the main use of the studied rooms, with the intelligibility results. Some different recommendations for reverberation times taken from the literature were analysed. The intelligibility results obtained from the measurements were also compared with the intelligibility results that were determined by the speech tests.
Go to article

Abstract

he paper contains results of a in situ research main task of which was to detect objects buried, partially or completely, in the sea bottom. Object detecting technologies employing acoustic wave sources based on nonlinear interaction of elastic waves require application of parametric sound sources. Detection of objects buried in the sea bottom with the use of classic hydroacoustic devices such as the sidescan sonar or multibeam echosounder proves ineffective. Wave frequencies used in such devices are generally larger than tens of kHz. This results in the fact that almost the whole acoustic energy is reflected from the bottom. On the other hand, parametric echosounders radiate waves with low frequency and narrow beam patterns which ensure high spatial resolution and allows to penetrate the sea bottom to depths of the order of tens of meters. This allows to detect objects that can be interesting, among other things, from archaeological or military point of view.
Go to article

Abstract

Acoustic quality of a classroom is a term proposed to describe acoustic properties that contribute to a subjective impression received by a human, such as speech intelligibility, external noise, or vocal effort. It is especially important in classrooms, where suitable conditions should be provided to convey verbal content to students, taking into account their age. The article presents a method for assessing the acoustic quality of classrooms based on a single number global index and taking into account a number of factors affecting the outcome of the assessment. Partial indices are presented and their weights are proposed based on an analysis of factors determining whether a room meets applicable acoustic requirements. Results of the assessment of the acoustic quality carried out with the use of the developed method in selected classrooms are also presented.
Go to article

Abstract

This paper presents an investigation about acoustic absorption of mortars with partial replacement of sand by waste (plywood formwork, rice husk, and thermoplastic shoe counters), examining different levels of replacement (0%, 5%, 10%, 25%, and 50%). The measurement of acoustic absorption was performed using a plane wave impedance tube with 100 mm diameter, using mortar samples of 20 mm, in frequency range 200-2000 Hz. Results demonstrated that some composite with waste presented noise reduction coefficient (NRC) above the reference mortar (NRC = 0.0343), such as a composite with 50% rice husk (NRC = 0.2757) and other with 50% of plywood waste (NRC = 0.2052). Since there is virtually no cost or difficulty to use these residuals, it may be concluded that it is a sustainable alternative to improve the acoustic comfort and reduce the impact of the waste on the environment.
Go to article

Abstract

Flow fields could be of great interest in the study of sound propagation in aeroengines. For ducts with rigid boundaries, the fluid-resonant category may contribute significantly to unwanted noise. An understanding of the multi-modal propagation of acoustic waves in ducts is of practical interest for use in the control of noise in, for example, aero-engines, automotive exhaust and heating or ventilation systems. The purpose of our experiments was to test the acoustic energy transmission of duct modes based on studies carried out by the sound intensity technique. Sound intensity patterns in circular duct are discussed of modal energy analysis with particular reference to proper orthogonal decomposition and dynamic mode decomposition. The authors try to justify some advantages of the sound intensity experimental research in this area. In the paper, the wide-band sound signal propagated from source approximated with loudspeaker in hard-walled duct is imaged using a sound intensity - based approach. For a simple duct geometry, the sound intensity field is examined visually and by performing a modal decomposition greater insight into the acoustic structures is obtained. The image of sound intensity fields below and above “cut-off” frequency region are found to compare acoustic modes which might resonate in duct.
Go to article

This page uses 'cookies'. Learn more