Search results

Filters

  • Journals
  • Date

Search results

Number of results: 4
items per page: 25 50 75
Sort by:

Abstract

This research work is focused on examining the turning behavior of Incoloy 800H superalloy by varying important cutting parameters. Incoloy 800H is an Iron- Nickel-Chromium based superalloy; it can withstand high temperature (810°C), high oxidization and corrosion resistance. But, it is difficult to turn in conventional machines and hence the present work was carried out and investigated. Experiments were conducted based on the standard L27 orthogonal array using uncoated tungsten inserts. The cutting force components, namely, feed force (Fx), thrust force (Fy) and cutting force (Fz); surface roughness (Ra) and specific cutting pressure (SCPR) were measured as responses and optimized using Taguchi-Grey approach. The main effects plots and analysis of mean (ANOM) were performed to check the effect of turning parameters and their significance on responses of cutting forces in all the direction (FX, FY, FZ), the surface roughness (Ra) and specific cutting pressure (SCPR). The tool wear and machined surfaces were also investigated using white light interferometer and SEM.
Go to article

Abstract

The machinability and the process parameter optimization of turning operation for 15-5 Precipitation Hardening (PH) stainless steel have been investigated based on the Taguchi based grey approach and Technique for Order Preference by Similarity to Ideal Solution (TOPSIS). An L27 orthogonal array was selected for planning the experiment. Cutting speed, depth of cut and feed rate were considered as input process parameters. Cutting force (Fz) and surface roughness (Ra) were considered as the performance measures. These performance measures were optimized for the improvement of machinability quality of product. A comparison is made between the multi-criteria decision making tools. Grey Relational Analysis (GRA) and TOPSIS are used to confirm and prove the similarity. To determine the influence of process parameters, Analysis of Variance (ANOVA) is employed. The end results of experimental investigation proved that the machining performance can be enhanced effectively with the assistance of the proposed approaches.
Go to article

Abstract

Flank wear of multilayer coated carbide (TiN/TiCN/Al2O3/TiN) insert in dry hard turning is studied. Machining under wet condition is also performed and flank wear is measured. A novel micro-channel is devised in the insert to deliver the cutting fluid directly at the tool-chip interface. Lower levels of cutting parameters yield the minimum flank wear which is significantly affected by cutting speed and feed rate. In comparison to dry and wet machining, insert with micro-channel reduces the flank wear by 48.87% and 3.04% respectively. The tool with micro-channel provides saving of about 87.5% in the consumption of volume of cutting fluid and energy.
Go to article

Abstract

The dry sliding wear behavior of heat-treated super duplex stainless steel AISI 2507 was examined by taking pin-on-disc type of wear-test rig. Independent parameters, namely applied load, sliding distance, and sliding speed, influence mainly the wear rate of super duplex stainless steel. The said material was heat treated to a temperature of 850°C for 1 hour followed by water quenching. The heat treatment was carried out to precipitate the secondary sigma phase formation. Experiments were conducted to study the influence of independent parameters set at three factor levels using the L27 orthogonal array of the Taguchi experimental design on the wear rate. Statistical significance of both individual and combined factor effects was determined for specific wear rate. Surface plots were drawn to explain the behavior of independent variables on the measured wear rate. Statistically, the models were validated using the analysis of variance test. Multiple non-linear regression equations were derived for wear rate expressed as non-linear functions of independent variables. Further, the prediction accuracy of the developed regression equation was tested with the actual experiments. The independent parameters responsible for the desired minimum wear rate were determined by using the desirability function approach. The worn-out surface characteristics obtained for the minimum wear rate was examined using the scanning electron microscope. The desired smooth surface was obtained for the determined optimal condition by desirability function approach.
Go to article

This page uses 'cookies'. Learn more