Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 2
items per page: 25 50 75
Sort by:

Abstract

In the article, the characterization of the microstructure, phase composition and distribution of elements in the Eu2O3-ZrO2 sintered materials obtained by four different ways of powders’ homogenization (mixing) process and different temperature of sintering process is shown. The feedstock powders with an average mole ratio of ZrO2 to Eu2O3 equal 74% to 26% were used as an initial material. The principal aim of the investigation was characterization of differences in the microstructure of the same type of ceramics, however, prepared via different mixing and manufacturing processes. The range of the investigation covered a characterization of these materials via phase identification of all samples by XRD (X-ray diffraction) and characterization of internal morphology of the specimens with detailed analysis of elements distributions by SEM (scanning electron microscopy) and EDS (energy dispersive spectrometry). The aim of the following investigation is to characterize the possibilities of the solid state synthesis of the europium zirconate based materials, dedicated for TBC applications.
Go to article

Abstract

In this paper, explain the preparation of CaTiO3 ceramics synthesized by the solid-state reaction method. Calcium carbonate and titanium dioxide were high energy mixed in stoichiometric amounts, and the obtained mixture was calcined at different temperatures (800, 900, 1000 and 1300ºC) for 2 h. The obtained samples were characterized by measurement of particle size, Energy Dispersive X-Ray (EDX) Analysis; differential thermal analysis, X-ray diffraction and SEM images. XRD patterns indicated that CaTiO3 ceramics with the structure of perovskite is obtained from calcined powders at 1,300°C for 2 h. SEM images show the formation of a very fine and homogeneous morphology. The measured values of electrical resistivity were within the typical range of insulating materials and approach values corresponding to insulating ceramics.
Go to article

This page uses 'cookies'. Learn more