Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 83
items per page: 25 50 75
Sort by:

Abstract

In this work, the influence of microwave drying parameters such as irradiation time and microwave power level on the properties of synthetic moulding sands is presented. Determination of compressive strength Rc s, shear strength Rt s and permeability Ps of synthetic moulding sands with the addition of two different bentonites, after drying process with variable microwave parameters were made. The research works were carried out using the microwave oven with regulated power range of the electromagnetic field. From the results obtained, the significant influence of both drying time and microwave power level on the selected properties of moulding sands was observed. In comparison to the conventional drying method, microwave drying allows to obtain higher compressive strength of the synthetic moulding sand. The influence of application microwave irradiation on permeability was not observed. Higher strength characteristics and shorter drying time are major advantages of application of the electromagnetic irradiation for drying of the synthetic moulding sand with regard to conventional drying method.
Go to article

Abstract

The ceaseless progress of nanotechnology, observed in the last years, causes that nanomaterials are more and more often applied in several fields of industry, technique and medicine. E.g. silver nanoparticles are used in biomedicine for disinfection and polymer nanoparticles allow insulin transportation in pharmacology. New generation materials containing nanoparticles are also used in the chemical industry (their participation in the commercial market equals app. 53 %). Nanomaterials are used in electronics, among others for semiconductors production (e.g. for producing nanoink Ag, which conducts electric current). Nanomaterials, due to their special properties, are also used in the foundry industry in metallurgy (e.g. metal alloys with nanocrystalline precipitates), as well as in investment casting and in moulding and core sand technologies. Nanoparticles and containing them composites are applied in several technologies including foundry practice, automotive industry, medicine, dentistry etc. it is expected that their role and market share will be successively growing.
Go to article

Abstract

The paper presents results of preliminary examinations on possibility of determining binder content in traditional moulding sands with the microwave method. The presented measurements were carried-out using a special stand, the so-called slot line. Binder content in thesandmix was determined by measurements of absorption damping Ad and insertion losses IL of electromagnetic wave. One of main advantages of the suggested new method of binder content measurement is short measuring time.
Go to article

Abstract

Within the research, selected multilayer technological systems created as combinations of water-glass containing moulding sand with foundry tooling, were characterised on the grounds of their electrical properties. By measuring resonance frequency and quality factor of a waveguide resonance cavity, real component of permittivity εr′ and loss tangent tgδ were determined for multilayer foundry systems with various qualitative and quantitative compositions. It was demonstrated that combination of a sandmix and foundry tooling with known dielectric properties results in a system with different physico-chemical properties, whose relation to the parameters of individual components of the system is undefined at this research stage. On the grounds of measurement results, theoretical value of microwave heating power, dissipated in unit volume of the selected multilayer foundry system, was determined. Knowledge of theoretical heating power and evaluation of physical, chemical and structural changes occurring in moulding sands exposed to microwaves in such a technological system makes a ground for empirical modelling of the process of microwave heating of foundry moulds and cores.
Go to article

Abstract

The paper presents the results of the crystallization process of silumin by the TDA thermographic method and the results of the cast microstructure obtained in the sampler TDA-10, that was cooling down in ambient air. The study was conducted for silumin AlSi11 unmodified. The work demonstrated that the use of thermal imaging camera allows for the measurement and recording the solidification process of silumin. Thermal curve was registered with the infrared camera and derivative curve that was calculated on the base of thermal curve have both a very similar shape to adequate them TDA curves obtained from measurements using a thermocouple. Test results by TDA thermographic method enable quantitative analysis of the kinetics of the cooling and solidification process of neareutectic silumin.
Go to article

Abstract

This paper focuses on mechanical properties of self hardening moulding sands with furfuryl and alkyd binders. Elasticity as a new parameter of moulding sands is investigated. With the use of presented testing equipment, it is possible to determine force kinetics and deformation of moulding sand in real time. The need for this kind of study comes from the modern casting industry. New foundries can be characterized with high intensity of production which is correlated with high level of mechanization and automatization of foundry processes. The increasingly common use of manipulators in production of moulds and cores can lead to generation of new types of flaws, caused by breakage in moulds and cores which could occur during mould assembly. Hence it is required that moulds and cores have high resistance to those kinds of factors, attributing it with the phenomenon of elasticity. The article describes the theoretical basis of this property, presents methods of measuring and continues earlier research.
Go to article

Abstract

One of the purposes of the application of chemically modified inorganic binders is to improve knocking out properties and the related reclamability with previously used in foundry inorganic binder (water glass), which allowing the use of ecological binders for casting nonferrous metals. Good knocking out properties of the sands is directly related to the waste sands reclamability, which is a necessary condition of effective waste management. Reclamation of moulding and core sands is a fundamental and effective way to manage waste on site at the foundry, in accordance with the Environmental Guidelines. Therefore, studies of reclamation of waste moulding and core sands with new types of inorganic binders (developed within the framework of the project) were carried out. These studies allowed to determine the degree of recovery of useful, material, what the reclaimed sand is, and the degree of its use in the production process. The article presents these results of investigation. They are a part of broader research programme executed under the project POIG.01.01.02-00- 015/09 "Advanced materials and technologies".
Go to article

Abstract

Presented are results of a preliminary research on determining a possibility to use microwave radiation for drying casting protective coatings applied on patterns used in the lost foam technology. Taken were measurements of permittivity εr and loss factor tgδ at 2.45 GHz, as well as attempts were made of microwave drying of a protective coating based on aluminium silicates, applied on shapes of foamed polystyrene and rigid polymeric foam. Time and results of microwave drying were compared with the results obtained by drying at 50 °C by the traditional method commonly used for removing water from protective coatings. Analysis of the obtained drying kinetics curves demonstrated that selection of proper operation parameters of microwave equipment permits the drying time to be significantly shortened. Depending on kind of the pattern material, drying process of a protective coating runs in a different way, resulting in obtaining different quality of the dried coating.
Go to article

Abstract

In the paper presented are results of a research on influence of electrical and physico-chemical properties of materials being parts of multicomponent and multimaterial systems used in foundry practice on efficiency and effectiveness of microwave heating. Effectiveness of the process was evaluated on the grounds of analysis of interaction between selected parameters of permittivity and loss factor, as well as collective index of energy absorbed, reflected and transmitted by these materials. In the examinations used was a stand of waveguide resonance cavity for determining electrical properties and a stand of microwave slot line for determining balance of microwave power emitted into selected materials. The examinations have brought closer the possibility of forecasting the behaviour of multimaterial systems like e.g. model, moulding sand or moulding box in microwave field on the grounds of various electrical and physico-chemical properties. On the grounds of analysis of the results, possible was selecting a group of materials designed for building foundry instrumentation to be effectively used in electromagnetic field.
Go to article

Abstract

This paper presents a new perspective on the issue of reclamation of moulding and core sands. Taking as a premise that the reclamation process must remain on the surface of grains some not separated binding materials rests, it should be chosen the proper moulding sand’s composition that will be least harmful for the reclaim quality. There are two different moulding and core sands taken into examinations. The researches prove that a small correction of their compositions (hardener type) improves the quality of the received reclaims. Carried out in this article studies have shown that such an approach to the problem of reclamation of the moulding and core sands is needed and reasonable.
Go to article

Abstract

The constant growth of foundry modernization, mechanization and automation is followed with growing requirements for the quality and parameters of both moulding and core sands. Due to this changes it is necessary to widen the requirements for the parameters used for their quality evaluation by widening the testing of the moulding and core sands with the measurement of their resistance to mechanical deformation (further called elasticity). Following article covers measurements of this parameter in chosen moulding and core sands with different types of binders. It focuses on the differences in elasticity, bending strength and type of bond destruction (adhesive/cohesive) between different mixtures, and its connection to the applied bonding agent. Moulding and cores sands on which the most focus is placed on are primarily the self-hardening moulding sands with organic and inorganic binders, belonging to the group of universal applications (used as both moulding and core sands) and mixtures used in cold-box technology.
Go to article

Abstract

The last decade has seen growing interest in professional public about applications of porous metallic materials. Porous metals represent a new type of materials with low densities, large specific surface, and novel physical and mechanical properties, characterized by low density and large specific surface. They are very suitable for specific applications due to good combination of physical and mechanical properties such as high specific strength and high energy absorption capability. Since the discovery of metal foams have been developed many methods and techniques of production in liquid, solid and gas phases. Condition for the use of metal foams - advanced materials with unique usability features, are inexpensive ways to manage their production. Mastering of production of metallic foams with defined structure and properties using gravity casting into sand or metallic foundry moulds will contribute to an expansion of the assortment produced in foundries by completely new type of material, which has unique service properties thanks to its structure, and which fulfils the current demanding ecological requirements. The aim of research conducted at the department of metallurgy and foundry of VSB-Technical University Ostrava is to verify the possibilities of production of metallic foams by conventional foundry processes, to study the process conditions and physical and mechanical properties of metal foam produced. Two procedures are used to create porous metal structures: Infiltration of liquid metal into the mold cavity filled with precursors or preforms and two stage investment casting.
Go to article

Abstract

One of the biggest problems for sand casting foundries must be the waste produced from disposable molds. Stricter environmental regulations make it harder to dispose of waste sand, so a truly competitive foundry does no longer only make great products, but also concentrates on a sustainable casting process. While methods for repurposing waste foundry sand are still limited, the internal circulation of such sands proves significant possibilities. This paper will focus on thermal reclamation of foundry sands in a special rotating drum furnace in a central facility to serve several foundries. Thermal reclamation is a process for handling foundry sands in elevated temperatures to combust unwanted substances from reusable base sand. The introduction focuses on background of the Finnish foundry business, the most common sand systems in Finland and their reclaim properties. The experimental part features presentation of the new reclamation plant process and the conducted test runs. The samples collected from each test run have been laboratory tested to assure proper sand quality. The results of this work showed that the reclamation of alkaline phenolic no-bake sands was excellent. Reclamation of green sands did not provide satisfactory results as expected and the reclamation of furan no-bake sands provided mixed results, as the raw material was imperfect to begin with. The most important result of this work is still the successful initiation of a centralized thermal reclamation plant, with the ability to reclaim sands of several foundries. With this all of industrial symbiosis, circular economy and sustainability advanced in Finland, and the future development of this plant provides even further opportunities and a possibility to spread the ideas on a global scale.
Go to article

Abstract

The work presents the results of examinations concerning the influence of various amounts of home scrap additions on the porosity of castings made of MgAl9Zn1 alloy. The fraction of home scrap in the metal charge ranged from 0 to 100%. Castings were pressure cast by means of the hot-chamber pressure die casting machine under the industrial conditions in one of the domestic foundries. Additionally, for the purpose of comparison, the porosity of specimens cut out directly of the MgAl9Zn1 ingot alloy was also determined. The examinations consisted in the qualitative assessment of porosity by means of the optical microscopy and its quantitative determination by the method of weighting specimens in air and in water. It was found during the examination that the porosity of castings decreases with an increase in the home scrap fraction in the metal charge. The qualitative examinations confirmed the beneficial influence of the increased home scrap fraction on the porosity of castings. It was concluded that the reusing of home scrap in a foundry can be a good way of reduction of costs related to the production of pressure castings.
Go to article

Abstract

The work deals with technology Patternless process that combines 3 manufacturing process mold by using rapid prototyping technology, conventional sand formation and 3D milling. It's unconventional technology that has been developed to produce large-sized and heavyduty castings weighing up to several tons. It is used mainly in prototype and small batch production, because eliminating production of models. The work deals with the production of blocks for making molds of gypsum and gypsum drying process technology Thermomold. Into blocks, where were made cavities by milling were casted test castings from AlSi10MgMn alloy by gravity casting. At machining of the mold cavity was varied feed rate of tool of cemented carbide. Evaluated was the surface roughness of test castings, that was to 5 micrometers with feed from 900 to 1300 mm/min. The dimensional accuracy of castings was high at feed rate of 1000 and 1500 mm/min did not exceed 0.025 mm.
Go to article

Abstract

The dimensional accuracy of a final casting of Inconel 738 LC alloy is affected by many aspects. One of them is the choice of method and time of cooling the wax model for precision investment casting. The main objective of this work was to study the initial deformation of the complex shape of a rotor blades casting. Various approaches have been tested for cooling a wax pattern. When wax models are air cooled and without clamping in the jig for cooling, deviations from the ideal shape of the casting are very noticeable (up to 8 mm) and most are in extreme positions of the model. When the blade is cooled in the fixing jig in a water environment, the resulting deviations compared to those of air cooling are significantly larger, sometimes up to 10 mm. This itself does not mean that the final shape of the casting is dimensionally more accurate with the usage of wax models, which have smaller deviations from the ideal position. Another deformation occurs when the shell mould is produced around the wax pattern and further deformations emerge while cooling the blade casting. This paper demonstrates the first steps in describing the complex process of deformations occurring in Inconel alloy blades produced with investment casting technology by comparing results of thermal imagery, simulations in foundry simulation software ProCAST 2010, and measurements from a CNC scanning system using a Carl Zeiss MC 850. Conclusions are so far not groundbreaking, but it seems that deformations of the wax pattern and deformations of the castings do in some cases cancel each other by having opposite directions. Describing the whole process of deformations will help increase the precision of blade castings so that the models at the beginning and the blades in the end are the same.
Go to article

Abstract

The work presents the results of examinations concerning the influence of various amounts of home scrap additions on the properties of castings made of MgAl9Zn1 alloy. The fraction of home scrap in the metal charge ranged from 0 to 100%. Castings were pressure cast by means of the hot-chamber pressure die casting machine under the industrial conditions in one of the domestic foundries. The examinations consisted in the determination of the following properties: tensile strength Rm, yield strength Rp0.2, and the unit elongation A5, all being measured during the static tensile test. Also, the hardness measurements were taken by the Brinell method. It was found that the mechanical properties (mainly the strength properties) are being improved up to the home scrap fraction of 50%. Their values were increased by about 30% over this range. Further rise in the home scrap content, however, brought a definite decrease in these properties. The unit elongation A5 exhibited continual decrease with an increase in the home scrap fraction in the metal charge. A large growth of hardness was noticed for the home scrap fraction increasing up to the value of 50%. Further increasing the home scrap percentage, however, did not result in a significant rise of the hardness value any more.
Go to article

Abstract

The essence of ablation casting technology consists in pouring castings in single-use moulds made from the mixture of sand and a watersoluble binder. After pouring the mould with liquid metal, while the casting is still solidifying, the mould destruction (washing out, erosion) takes place using a stream of cooling medium, which in this case is water. This paper focuses on the selection of moulding sands with hydrated sodium silicate for moulds used in the ablation casting. The research is based on the use of Cordis binder produced by the Hüttenes-Albertus Company. It is a new-generation inorganic binder based on hydrated sodium silicate. Its hardening takes place under the effect of high temperature. As part of the research, loose moulding mixtures based on the silica sand with different content of Cordis binder and special Anorgit additive were prepared. The reference material was sand mixture without the additive. The review of literature data and the results of own studies have shown that moulding sand with hydrated sodium silicate hardened by dehydration is characterized by sufficient strength properties to be used in the ablation casting process. Additionally, at the Foundry Research Institute in Krakow, preliminary semi-industrial tests were carried out on the use of Cordis sand technology in the manufacture of moulds for ablation casting. The possibility to use these sand mixtures has been confirmed in terms of both casting surface quality and sand reclamation.
Go to article

Abstract

The paper presents the results of basic research on the influence of the properties of sand grains on electrical properties of water glass moulding sands. It shows electrical properties of the main component – sand grains, crucial to the kinetics of moulding sands heating, such as permittivity εr and loss factor tgδ. Measurements were carried out with the use of the perturbation method for silica, chromite and olivine sands of different mineral, chemical composition and particle size distribution, as well as for moulding sands with water glass grade 145. Analysis of the results of measurements of electrical properties shows that all moulding sands are characterized by a similar permittivity εr and loss factor tgδ. It was found that the electrical properties and the quantity and quality of other components may have a decisive influence on the effectiveness and efficiency of the microwave heating of moulding sands with sand grains. In determining the ability to efficiently absorb the microwave radiation for mixtures which moulding sands are, the impact of all components influencing their individual technological parameters should be taken into account.
Go to article

Abstract

The paper presents results of studies on the effect of the nodular cast iron metal matrix composition on the abrasive and adhesive wear resistance. Nodular cast iron with different metal matrix obtained in the rough state and ADI were tested. To research of abrasive and adhesive wear the pearlitic and bainitic cast iron with carbides and without this component were chosen. The influence of the carbides amount for cast iron wear resistance was examined. It was found, that the highest abrasive and adhesive wear resistance under conditions of dry friction has a nodular cast iron with carbides with upper and lower bainite. Carbides in bainitic and pearlitic cast iron significantly increase the wear resistance in these conditions. In terms of fluid friction the largest wear resistance had cast iron group with the highest hardness.
Go to article

Abstract

This paper presents the influence of annealing time 30, 60 and 120 min at 1000°C for quenching CuAl7Fe5Ni5W2Si2 bronze in 10% water solution of NaCl, on the microstructure and mechanical properties. The presented results concern the species newly developed aluminum-iron-nickel bronze, with additions W and Si. In order to determine changes in the microstructure of the hardened bronze metallographic studies were performed on cylindrical samples of diameter 10 mm, on the metallographic microscope with digital image analysis, X-ray phase analysis, EDX point with the digital recording on the computer. Specified percentage of the microstructure of martensite and bainite, participation of proeutectoid α phase in the microstructure, grain size of former β phase, the amount of dissolved κ phase. It was found that in the microstructure of bronze in the cast state, there are a number of intermetallic phases of κ type. At interphase boundaries of primary intermetallic faceted precipitates, especially rich in tungsten (IM_W), nucleate and grow dendritic primary intermetallic κI phases, with chemical composition similar to the type of Fe3Si iron silicide. Dissolved, during the heating, in the β phase are all the intermediate phase included in the microstructure, with the exception of primary intermetallic phases of tungsten and κI. Prolongation of the isothermal annealing causes coagulation and coalescence of primary phases. In microstructure of the bronze after quenching obtained the α phase precipitation on the grain boundary of secondary β phase, coarse bainite and martensite, for all annealing times. With the change of annealing time are changed the relative proportions of individual phases or their systems, in the microstructure. In the microstructure of bronze, hold at temperature of 1000°C for 60 min, after quenching martensitic microstructure was obtained with the primary phases, and the least amount of bainite
Go to article

Abstract

The constantly developing and the broadly understood automation of production processes in foundry industry, creates both new working conditions - better working standards, faster and more accurate production - and new demands for previously used materials as well as opportunities to generate new foundry defects. Those high requirements create the need to develop further the existing elements of the casting production process. This work focuses on mechanical and thermal deformation of moulding sands prepared in hot-box technology. Moulding sands hardened in different time periods were tested immediately after hardening and after cooling. The obtained results showed that hardening time period in the range 30-120 sec does not influence the mechanical deformation of tested moulding sands significantly. Hot distortion tests proved that moulding sands prepared in hot-box technology can be characterized with stable thermal deformation up to the temperature of circa 320oC.
Go to article

Abstract

In the foundry industry, many harmful compounds can be found, which as a result of gradual but long-term exposure to employees bring negative results. One of such compounds is phenol (aromatic organic compound), which its vapours are corrosive to the eyes, the skin, and the respiratory tract. Exposition to this compound also may cause harmful effects on the central nervous system and heart, resulting in dysrhythmia, seizures, and coma. Phenol is a component of many foundry resins, especially used in shell moulds in the form of resincoated sands. In order to identify it, the pyrolysis gas chromatography-mass spectrometry method (Py-GC/MS) was used. The tests were carried out in conditions close to real (shell mould process – temperature 300°C). During the measurement, attention was focused on the appropriate selection of chromatographic analysis conditions in order to best separate the compounds, as it is difficult to separate the phenol and its derivatives. The identification of compounds was based on own standards.
Go to article

Abstract

The paper analyses specific defects of castings produced by semi-solid casting process, especially rheocasting method SEED, which uses mechanical swirling for reaching proper structure in semisolid state with high content of solid fraction. Heat treated alloy AlSi7Mg0.3 was applied for producing an Engine Bracket casting part. For observing structure, metallographic observation by light and SEM microscopy was used. To analyse the process, software ProCAST was used to simulate the movements in shot chamber and filling of the mold.
Go to article

Abstract

Issues connected with high quality casting alloys are important for responsible construction elements working in hard conditions. Traditionally, the quality of aluminium casting alloy refers to such microstructure properties as the presence of inclusions and intermetallic phases or porosity. At present, in most cases, Quality index refers to the level of mechanical properties – especially strength parameters, e.g.: UTS, YS, HB, E (Young’s Modulus), K1c (stress intensity factor). Quality indexes are often presented as a function of density. However, generally it is known, that operating durability of construction elements depends both on the strength and plastic of the material. Therefore, for several years now, in specialist literature, the concept of quality index (QI) was present, combines these two important qualities of construction material. The work presents the results of QI research for casting hypoeutectic silumin type EN AC-42100 (EN AC-AlSi7Mg0.3), depending on different variants of heat treatment, including jet cooling during solution treatment.
Go to article

This page uses 'cookies'. Learn more