Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 2
items per page: 25 50 75
Sort by:

Abstract

We used simple sequence repeat markers and 25 morphological characters to characterize 18 Tunisian fig (Ficus carica L.) cultivars. Morphological traits suggested a high level of variation in the germplasm. Principal component analysis (PCA) differentiated the studied cultivars. In the derived dendrogram the cultivars clustered independently of their geographical origin and sex of trees. Simple sequence repeat (SSR) markers were used to compare genetic polymorphism with the observed phenotypic variation. Using six microsatellite primers, 39 alleles and 59 genotypes were identified. The high values of polymorphism information content (PIC), ranging from 0.67 to 0.85, confirmed the effectiveness of microsatellite analysis for determining molecular polymorphism and characterizing the studied cultivars. Multilocus genotyping unambiguously distinguished all the cultivars. The ability of each type of feature to differentiate cultivars of this crop is discussed.
Go to article

Abstract

Clarifying the genetic background of the drought-tolerance trait is a crucial task that may help to improve plant performance under stress by a genetic engineering approach. Dehydration-responsive element-binding protein (DREB) is a transcription factor family which modulates many stress-responsive genes. In this study, we isolated a DREB homolog gene named ZmDREBtv from Zea mays var. Tevang-1. Using bioinformatic tools, a number of InDels and SNPs in ZmDREBtv sequence different from the reference accession were identified. In addition, based on deduced protein sequence similarity, ZmDREBtv was assigned to transcription factor DREB2 class as featured by a conserved DNA binding domain - AP2. The ZmDREBtv construct under thecontrol of the rd29A promoter was transformed into a drought-sensitive maize plant, K7 line. The transgenic plants were assessed with reference to molecular and phenotypic characteristics related to the drought-tolenrance trait. The results proved that the maize plants carrying ZmDREBtv gene showed enhanced tolerance and better performance to the water-deficit environment at different stages, compared to the wild-type plants.
Go to article

This page uses 'cookies'. Learn more