Search results

Filters

  • Journals
  • Date

Search results

Number of results: 108
items per page: 25 50 75
Sort by:

Abstract

This paper presents matters related to production of ceramic and cast iron composite. The composite was made with the use of a foam structured ceramic insert. The tests included measuring of hardness, impact strength and resistance to abrasive wear of the composite produced. On the basis of obtaining results was stated that the use of foamed ceramic filters provides good conditions of filling a ceramic framework with molten grey or chromium cast iron. The growth of hardness of the ceramic- grey cast iron composite is ca. 60% as compared to the grey cast iron hardness. The growth of hardness of the ceramic- chromium cast iron composite is slight and does not exceed 5 % in comparison to the chromium cast iron. Introduction of the ceramic inserts deteriorates the cast iron impact strength by ca. 20 - 30 %. The use of ceramic inserts increases the resistance to abrasive wear in case of grey cast iron by ca. 13% and in case of the chromium cast iron by ca. 10 %.
Go to article

Abstract

The article presents results of pitting corrosion studies of selected silicon cast irons. The range of studies included low, medium and high silicon cast iron. The amount of alloying addition (Si) in examined cast irons was between 5 to 25 %. Experimental melts of silicon cast irons [1-3] were conducted in Department of Foundry of Silesian University of Technology in Gliwice and pitting corrosion resistance tests were performed in Faculty of Biomedical Engineering in Department of Biomaterials and Medical Devices Engineering of Silesian University of Technology in Zabrze. In tests of corrosion resistance the potentiostat VoltaLab PGP201 was used. Results obtained in those research complement the knowledge about the corrosion resistance of iron alloys with carbon containing Si alloying addition above 17 % [4-6]. Obtained results were supplemented with metallographic examinations using scanning electron microscopy. The analysis of chemical composition for cast irons using Leco spectrometer was done and the content of alloying element (silicon) was also determined using the gravimetric method in the laboratory of the Institute of Welding in Gliwice. The compounds of microstructure were identify by X-ray diffraction.
Go to article

Abstract

The results of studies on the use of magnesium alloy in modern Tundish for production of vermicular graphite cast irons were described. This paper describes the results of using a low-magnesium ferrosilicon alloy for the production of vermicular graphite cast irons. The paper presents a vermicular (and nodular) graphite in different walled castings. The results of trials have shown that the magnesium Tundish process can produce high quality vermicular graphite irons under the specific industrial conditions of Foundries - Odlewnie Polskie S.A. in Starachowice. In this work describes too preliminary studies on the oxygen state in cast iron and their effect on graphite crystallization.
Go to article

Abstract

The paper presents the issue of synthetic cast iron production in the electric induction furnace exclusively on the steel scrap base. Silicon carbide and synthetic graphite were used as carburizers. The carburizers were introduced with solid charge or added on the liquid metal surface. The chemical analysis of the produced cast iron, the carburization efficiency and microstructure features were presented in the paper. It was stated that ferrosilicon can be replaced by silicon carbide during the synthetic cast iron melting process. However, due to its chemical composition (30% C and 70% Si) which causes significant silicon content in iron increase, the carbon deficit can be partly compensated by the carburizer introduction. Moreover it was shown that the best carbon and silicon assimilation rate is obtained where the silicon carbide is being introduced together with solid charge. When it is thrown onto liquid alloy surface the efficiency of the process is almost two times less and the melting process lasts dozen minutes long. The microstructure of the cast iron produced with the silicon carbide shows more bulky graphite flakes than inside the microstructure of cast iron produced on the pig iron base.
Go to article

Abstract

The influence of aluminium (added in quantity from about 0.6% to about 2.8%) on both the alloy matrix and the shape of graphite precipitates in cast iron treated with a fixed amounts of cerium mischmetal (0.11%) and ferrosilicon (1.29%) is discussed in the paper. The metallographic examinations were carried out for specimens cut out of the separately cast rods of 20 mm diameter. It was found that the addition of aluminium in the amounts from about 0.6% to about 1.1% to the cast iron containing about 3% of carbon, about 3.7% of silicon (after graphitizing modification), and 0.1% of manganese leads to the occurrence of the ferrite-pearlite matrix containing cementite precipitates in the case of the treatment of the alloy with cerium mischmetal . The increase in the quantity of aluminium up to about 1.9% or up to about 2.8% results either in purely ferrite matrix in this first case or in ferrite matrix containing small amounts of pearlite in the latter one. Nodular graphite precipitates occurred only in cast iron containing 1.9% or 2.8% of aluminium, and the greater aluminium content resulted in the higher degree of graphite spheroidization. The noticeable amount of vermicular graphite precipitates accompanied the nodular graphite.
Go to article

Abstract

The paper presents selected granular ceramic materials available on the Polish market. Their characteristics have been determined in the aspect on application in the production of iron alloy-ceramic composite. The possibility of obtaining a composite layer by means of bulk grains in molds of plates were considered, which was the foundation for experimental molds to be used in service tests. On the basis of obtaining results was stated that the knowledge of the characteristics of bulk grains enables the calculation of their quantity necessary for the composite production. When using the bulk grains the thickness of the composite layer is restricted by the thermal relations (cooler) and the physical phenomena (buoyancy, metal static pressure). Increasing amount of grains above definite condition causes surface defects in the castings. Each casting, due to its weight, shape and place of composite layer production requires an individual approach, both at the stage of formation and that of calculation of the required quantity of ceramic grains.
Go to article

Abstract

The present paper is a presentation of results of a study on morphology, chemical composition, material properties (HVIT, HIT, EIT), and nanoindentation elastic and plastic work for carbide precipitates in chromium cast iron containing 24% Cr. It has been found that the carbides differ in chemical composition, as well as in morphology and values characterizing their material properties. The carbides containing the most chromium which had the shape of thick and long needles were characterized with highest values of the analyzed material properties.
Go to article

Abstract

The paper proposes a methodology useful in verification of results of dilatometric tests aimed at determination of temperatures defining the start and the end of eutectoid transformation in the course of ductile cast iron cooling, based on quenching techniques and metallographic examination. For an industrial melt of ductile cast iron, the effect of the rate of cooling after austenitization at temperature 900°C carried out for 30 minutes on temperatures TAr1 start and TAr1 end was determined. The heating rates applied in the study were the same as the cooling rates and equaled 30, 60, 90, 150, and 300°C/h. It has been found that with increasing cooling rate, values of temperatures TAr1 start and TAr1 end decrease by several dozen degrees.
Go to article

Abstract

The paper presents an analysis of factors affecting the wear of cylinder liners. The effect of the graphite precipitation morphology on the cylinder liner wear mechanism is presented. Materials used to cast cylinder liners mounted in a number of engines have been examined for their conformity with requirements set out in applicable Polish industrial standard. A casting for a prototype cylinder liner has been made with a microstructure guaranteeing good service properties of the part.
Go to article

Abstract

The paper presents results of examination of material parameters of cast iron with structure obtained under rapid resolidification conditions carried out by means of the nanoindentation method.
Go to article

Abstract

The influence of a shape of graphite precipitates in cast iron on the thermal shock resistance of the alloy was initially determined. Investigations included the nodular cast iron and the vermicular one, as well as the cast iron containing flake graphite. The thermal shock resistance was examined at a special laboratory stand which allowed for multiple heating and cooling of specimens within the presumed temperature range. The specimens were inductively heated and then cooled in water of constant temperature of about 30°C. There were used flat specimens 70 mm long, 5 mm thick in the middle part, and tapering like a wedge over a distance of 15 mm towards both ends. The total length of cracks generated on the test surfaces of the wedge-shaped parts of specimens was measured as a characteristic value inversely proportional to the thermal shock resistance of a material. The specimens heated up to 500°C were subjected to 2000 test cycles of alternate heating and cooling, while the specimens heated up to 600°C underwent 1000 such cycles. It was found that as the heating temperature rose within the 500-600°C range, the thermal shock resistance decreased for all examined types of cast iron. The research study proved that the nodular cast iron exhibited the best thermal shock resistance, the vermicular cast iron got somewhat lower results, while the lowest thermal shock resistance was exhibited by grey cast iron containing flake graphite.
Go to article

Abstract

The influence of aluminium added in amounts of about 1.6%, 2.1%, or 2.8% on the effectiveness of cast iron spheroidization with magnesium was determined. The cast iron was melted and treated with FeSiMg7 master alloy under industrial conditions. The metallographic examinations were performed for the separately cast rods of 20 mm diameter. They included the assessment of the shape of graphite precipitates and of the matrix structure. The results allowed to state that the despheroidizing influence of aluminium (introduced in the above mentioned quantities) is the stronger, the higher is the aluminium content in the alloy. The results of examinations carried out by means of a computer image analyser enabled the quantitative assessment of the considered aluminium addition influence. It was found that the despheroidizing influence of aluminium (up to about 2.8%) yields the crystallization of either the deformed nodular graphite precipitates or vermicular graphite precipitates. None of the examined specimens, however, contained the flake graphite precipitates. The results of examinations confirmed the already known opinion that aluminium widens the range of ferrite crystallization.
Go to article

Abstract

An initial assessment of the effectiveness of cast iron inoculation, performed by the method of impulse introducing the master alloy into cast iron, is presented. The experiment was concerned with the hypoeutectic gray cast iron inoculated with either the Alinoc or the Barinoc master alloy by means of an experimental device for pneumatic transportation. Examinations involved pneumatic injection of the powdered inoculant carried in a stream of gaseous medium (argon) into the metal bath held in the crucible of an induction furnace. It was found that the examined process is characterised by both high effectiveness and stability.
Go to article

Abstract

The work determined the influence of aluminium in the amount from about 0.6% to about 8% on graphitization of cast iron with relatively high silicon content (3.4%-3.9%) and low manganese content (about 0.1%). The cast iron was spheroidized with cerium mixture and graphitized with ferrosilicon. It was found that the degree of graphitization increases with an increase in aluminium content in cast iron up to 2.8%, then decreases. Nodular and vermicular graphite precipitates were found after the applied treatment in cast iron containing aluminium in the amount from about 1.9% to about 8%. The Fe3AlCx carbides, increasing brittleness and deteriorating the machinability of cast iron, were not found in cast iron containing up to about 6.8% Al. These carbides were revealed only in cast iron containing about 8% Al.
Go to article

Abstract

The work determined the influence of aluminium in the amount from about 1% to about 7% on the graphite precipitates in cast iron with relatively high silicon content (3.4% to 3.90%) and low manganese content (about 0.1%). The cast iron was spheroidized with cerium mixture and graphitized with ferrosilicon. The performed treatment resulted in occurring of compact graphite precipitates, mainly nodular and vermicular, of various size. The following parameters were determined: the area percentage occupied by graphite, perimeters of graphite precipitates per unit area, and the number of graphite precipitates per unit area. The examinations were performed by means of computer image analyser, taking into account four classes of shape factor. It was found that as the aluminium content in cast iron increases from about 1.1% to about 3.4%, the number of graphite precipitates rises from about 700 to about 1000 per square mm. For higher Al content (4.2% to 6.8%) this number falls within the range of 1300 – 1500 precipitates/mm2 . The degree of cast iron spheroidization increases with an increase in aluminium content within the examined range, though when Al content exceeds about 2.8%, the area occupied by graphite decreases. The average size of graphite precipitates is equal to 11-15 μm in cast iron containing aluminium in the quantity from about 1.1% to about 3.4%, and for higher Al content it decreases to about 6 μm.
Go to article

Abstract

The publication presents the results of examination of selected carburizers used for cast iron production with respect to their electric resistance. Both the synthetic graphite carburizers and petroleum coke (petcoke) carburizers of various chemical composition were compared. The relationships between electrical resistance of tested carburizers and their quality were found. The graphite carburizers exhibited much better conductivity than the petcoke ones. Resistance characteristics were different for the different types of carburizers. The measurements were performed according to the authors’ own method based on recording the electric current flow through the compressed samples. The samples of the specified diameter were put under pressure of the gradually increased value (10, 20, 50, 60, and finally 70 bar), each time the corresponding value of electric resistance being measured with a gauge of high accuracy, equal to 0.1μΩ. The higher pressure values resulted in the lower values of resistance. The relation between both the thermal conductance and the electrical conductance (or the resistance) is well known and mentioned in the professional literature. The results were analysed and presented both in tabular and, additionally, in graphic form.
Go to article

Abstract

The paper presents a solidification sequence of graphite eutectic cells of A and D types, as well as globular and cementite eutectics. The morphology of eutectic cells in cast iron, the equations for their growth and the distances between the graphite precipitations in A and D eutectic types were analyzed. It is observed a critical eutectic growth rate at which one type of eutectic transformed into another. A mathematical formula was derived that combined the maximum degree of undercooling, the cooling rate of cast iron, eutectic cell count and the eutectic growth rate. One type of eutectic structure turned smoothly into the other at a particular transition rate, transformation temperature and transformational eutectic cell count. Inoculation of cast iron increased the number of eutectic cells with flake graphite and the graphite nodule count in ductile iron, while reducing the undercooling. An increase in intensity of inoculation caused a smooth transition from a cementite eutectic structure to a mixture of cementite and D type eutectic structure, then to a mixture of D and A types of eutectics up to the presence of only the A type of eutectic structure. Moreover, the mechanism of inoculation of cast iron was studied.
Go to article

Abstract

A cast iron is gradient material. This means that depending on the cooling rate it is possible, at the same chemical composition and the physicochemical state of molten metal, to obtain material with a different structure. The connection between the wall thickness of the casting and the speed of its cooling expresses the casting module. Along with the module escalation a cooling rate of the casting is reducing what can cause changes of the microstructure and the increased tendency to the crystallization of distorted graphite forms. Inspections of experimental castings from nodular cast iron with different modules were conducted to the graphite form.
Go to article

Abstract

The paper concerns the processes connected with the formation of chromium white cast iron microstructure. The influence of titanium and strontium on the alloy crystallization has been described using TDA method and EDS analysis. Conducted experiments allowed the determination of the selected additions influence on the microstructure of examined alloys. TDA analysis enabled indication of the characteristic temperatures of thermal effects for samples with strontium and titanium and the comparison of results for the reference sample without additions. The results of TDA test also included the analysis of the temperature first derivative values, which presented interesting differences as well. The scanning microscopy observation clearly indicated the difference between the effect of strontium and titanium on the alloy microstructure. The EDS analysis helped to identify the chemical composition of the evolving phases and confirmed the strontium presence in the eutectic. Experimental results allowed to draw reliable conclusions about the effect of applied additions on the crystallization and microstructure of chromium cast iron.
Go to article

Abstract

Determined were direction and intensity of influence of alloying additions on the number of eutectic graphite colonies in austenitic cast iron Ni-Mn-Cu. Chemical composition of the cast iron was 1.7 to 3.3% C, 1.4 to 3.1% Si, 2.8 to 9.9% Ni, 0.4 to 7.7% Mn, 0 to 4.6% Cu, 0.14 to 0.16% P and 0.03 to 0.04% S. Analysed were structures of mottled (20 castings) and grey (20 castings) cast iron. Obtained were regression equations determining influence intensity of individual components on the number of graphite colonies per 1 cm2 (LK). It was found that, in spite of high total content of alloying elements in the examined cast iron, the element that mainly decides the LK value is carbon, like in a plain cast iron.
Go to article

Abstract

In the paper, a relationship between chemical composition of Ni-Mn-Cu cast iron and its structure, hardness and corrosion resistance is determined. The examinations showed a decrease of thermodynamic stability of austenite together with decreasing nickel equivalent value, in cast iron solidifying according to both the stable and the metastable systems. As a result of increasing degree of austenite transformation, the created martensite caused a significant hardness increase, accompanied by small decline of corrosion resistance. It was found at the same time that solidification way of the alloy and its matrix structure affect corrosion resista
Go to article

Abstract

In the research, relationships between matrix structure and hardness of high-quality Ni-Mn-Cu cast iron containing nodular graphite and nickel equivalent value were determined. Nickel equivalent values were dependent on chemical composition and differences between them resulted mostly from nickel concentration in individual alloys. Chemical compositions of the alloys were selected to obtain, in raw condition, austenitic and austenitic-martensitic cast iron. Next, stability of matrix of raw castings was determined by dilatometric tests. The results made it possible to determine influence of nickel equivalent on martensite transformation start and finish temperatures.
Go to article

Abstract

Within the presented work, the effect of austenite transformation on abrasive wear as well as on rate and nature of corrosive destruction of spheroidal Ni-Mn-Cu cast iron was determined. Cast iron contained: 3.1÷3.4 %C, 2.1÷2.3 %Si, 2.3÷3.3 %Mn, 2.3÷2.5 %Cu and 4.8÷9.3 %Ni. At a higher degree of austenite transformation in the alloys with nickel equivalent below 16.0%, abrasive wear resistance was significantly higher. Examinations of the corrosion resistance were carried out with the use of gravimetric and potentiodynamic method. It was shown that higher degree of austenite transformation results in significantly higher abrasive wear resistance and slightly higher corrosion rate, as determined by the gravimetric method. However, results of potentiodynamic examinations showed creation of a smaller number of deep pinholes, which is a favourable phenomenon from the viewpoint of corrosion resistance.
Go to article

Abstract

The paper presents influence of soaking parameters (temperature and time) on structure and mechanical properties of spheroidal graphite nickel-manganese-copper cast iron, containing: 7.2% Ni, 2.6% Mn and 2.4% Cu. Raw castings showed austenitic structure and relatively low hardness (150 HBW) guaranteeing their good machinability. Heat treatment consisted in soaking the castings within 400 to 600°C for 2 to 10 hours followed by air-cooling. In most cases, soaking caused changes in structure and, in consequence, an increase of hardness in comparison to raw castings. The highest hardness and tensile strength was obtained after soaking at 550°C for 6 hours. At the same time, decrease of the parameters related to plasticity of cast iron (elongation and impact strength) was observed. This resulted from the fact that, in these conditions, the largest fraction of fine-acicular ferrite with relatively high hardness (490 HV0.1) was created in the matrix. At lower temperatures and after shorter soaking times, hardness and tensile strength were lower because of smaller degree of austenite transformation. At higher temperatures and after longer soaking times, fine-dispersive ferrite was produced. That resulted in slightly lower material hardness.
Go to article

Abstract

This study discloses the characteristic features of the modified low-cycle fatigue test used for the determination of the mechanical properties of two types of cast iron, i.e. EN-GJL-250 and EN-GJS-600-3. For selected materials, metallographic studies were also conducted in the range of light microscopy and scanning microscopy.
Go to article

This page uses 'cookies'. Learn more