Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 57
items per page: 25 50 75
Sort by:

Abstract

A new method for measurement of local heat flux to water-walls of steam boilers was developed. A flux meter tube was made from an eccentric tube of short length to which two longitudinal fins were attached. These two fins prevent the boiler setting from heating by a thermal radiation from the combustion chamber. The fins are not welded to the adjacent water-wall tubes, so that the temperature distribution in the heat flux meter is not influenced by neighbouring water-wall tubes. The thickness of the heat flux tube wall is larger on the fireside to obtain a greater distance between the thermocouples located inside the wall which increases the accuracy of heat flux determination. Based on the temperature measurements at selected points inside the heat flux meter, the heat flux absorbed by the water-wall, heat transfer coefficient on the inner tube surface and temperature of the water-steam mixture was determined.
Go to article

Abstract

Two-dimensional numerical investigations of the fluid flow and heat transfer have been carried out for the laminar flow of the louvered fin-plate heat exchanger, designed to work as an air-source heat pump evaporator. The transferred heat and the pressure drop predicted by simulation have been compared with the corresponding experimental data taken from the literature. Two dimensional analyses of the louvered fins with varying geometry have been conducted. Simulations have been performed for different geometries with varying louver pitch, louver angle and different louver blade number. Constant inlet air temperature and varying velocity ranging from 2 to 8 m/s was assumed in the numerical experiments. The air-side performance is evaluated by calculating the temperature and the pressure drop ratio. Efficiency curves are obtained that can be used to select optimum louver geometry for the selected inlet parameters. A total of 363 different cases of various fin geometry for 7 different air velocities were investigated. The maximum heat transfer improvement interpreted in terms of the maximum efficiency has been obtained for the louver angle of 16° and the louver pitch of 1.35 mm. The presented results indicate that varying louver geometry might be a convenient way of enhancing performance of heat exchangers.
Go to article

Abstract

The paper deals with numerical modelling of carbon dioxide capture by amine solvent from flue gases in post-combustion technology. A complex flow system including a countercurrent two-phase flow in a porous region, chemical reaction and heat transfer is considered to resolve CO2 absorption. In order to approach the hydrodynamics of the process a two-fluid Eulerian model was applied. At the present stage of model development only the first part of the cycle, i.e. CO2 absorption was included. A series of parametric simulations has shown that carbon dioxide capture efficiency is mostly influenced by the ratio of liquid (aqueous amine solution) to gas (flue gases) mass fluxes. Good consistency of numerical results with experimental data acquired at a small-scale laboratory CO2 capture installation (at the Institute for Chemical Processing of Coal, Zabrze, Poland) has proved the reliability of the model.
Go to article

Abstract

An important phenomenon of delta wing is the mechanism of vortex core, which indicates the increase in lifting force until the occurrence of the vortex breakdown. The computational fluid dynamics (CFD) is very helpful in visualizing and providing analysis of the detailed data. The use of turbulent models will affect the quality of results in obtaining the vortex breakdown phenomenon. This study used several models of turbulence to capture the occurrence of vortex breakdown and compare it with experiments using water tunnel test facility. The results show that all turbulence models give good results at a low angle of attack (AoA), but at a high AoA the DES model gives the results closest to experimental ones with Cl error value of about 1%. Taking into account the time required and the acceptable level of accuracy, the use of SST and k-omega models is an alternative option for use in the detection of vortex breakdown.
Go to article

Abstract

The presented paper concerns CFD optimization of the straight-through labyrinth seal with a smooth land. The aim of the process was to reduce the leakage flow through a labyrinth seal with two fins. Due to the complexity of the problem and for the sake of the computation time, a decision was made to modify the standard evolutionary optimization algorithm by adding an approach based on a metamodel. Five basic geometrical parameters of the labyrinth seal were taken into account: the angles of the seal’s two fins, and the fin width, height and pitch. Other parameters were constrained, including the clearance over the fins. The CFD calculations were carried out using the ANSYS-CFX commercial code. The in-house optimization algorithm was prepared in the Matlab environment. The presented metamodel was built using a Multi-Layer Perceptron Neural Network which was trained using the Levenberg-Marquardt algorithm. The Neural Network training and validation were carried out based on the data from the CFD analysis performed for different geometrical configurations of the labyrinth seal. The initial response surface was built based on the design of the experiment (DOE). The novelty of the proposed methodology is the steady improvement in the response surface goodness of fit. The accuracy of the response surface is increased by CFD calculations of the labyrinth seal additional geometrical configurations. These configurations are created based on the evolutionary algorithm operators such as selection, crossover and mutation. The created metamodel makes it possible to run a fast optimization process using a previously prepared response surface. The metamodel solution is validated against CFD calculations. It then complements the next generation of the evolutionary algorithm.
Go to article

Abstract

The paper addresses the issues of quantification and understanding of Solid Oxide Fuel Cells (SOFC) based on numerical modelling carried out under four European, EU, research projects from the 7FP within the Fuel Cell and Hydrogen Joint Undertaking, FCH JU, activities. It is a short review of the main projects’ achievements. The goal was to develop numerical analyses at a single cell and stack level. This information was integrated into a system model that was capable of predicting fuel cell phenomena and their effect on the system behaviour. Numerical results were analysed and favourably compared to experimental results obtained from the project partners. At the single SOFC level, a static model of the SOFC cell was developed to calculate output voltage and current density as functions of fuel utilisation, operational pressure and temperature. At the stack level, by improving fuel cell configuration inside the stack and optimising the operation conditions, thermal stresses were decreased and the lifetime of fuel cell systems increased. At the system level, different layouts have been evaluated at the steady-state and by dynamic simulations. Results showed that increasing the operation temperature and pressure improves the overall performance, while changes of the inlet gas compositions improve fuel cell performance.
Go to article

Abstract

In the paper, the authors discuss the construction of a model of an exemplary urban layout. Numerical simulation has been performed by means of a commercial software Fluent using two different turbulence models: the popular k-ε realizable one, and the Reynolds Stress Model (RSM), which is still being developed. The former is a 2-equations model, while the latter – is a RSM model – that consists of 7 equations. The studies have shown that, in this specific case, a more complex model of turbulence is not necessary. The results obtained with this model are not more accurate than the ones obtained using the RKE model. The model, scale 1:400, was tested in a wind tunnel. The pressure measurement near buildings, oil visualization and scour technique were undertaken and described accordingly. Measurements gave the quantitative and qualitative information describing the nature of the flow. Finally, the data were compared with the results of the experiments performed. The pressure coefficients resulting from the experiment were compared with the coefficients obtained from the numerical simulation. At the same time velocity maps and streamlines obtained from the calculations were combined with the results of the oil visualisation and scour technique.
Go to article

This page uses 'cookies'. Learn more