Search results

Filters

  • Journals
  • Date

Search results

Number of results: 7
items per page: 25 50 75
Sort by:

Abstract

The paper presents results of Ti-addition to High Chromium Cast Iron (HCCI) on the structure and selected mechanical properties. For this study casted two sets of cylinders with dimensions ø20 mm, ø15 mm x 250 mm, for the High Chromium Cast Iron (HCCI) and with the 4% by mass Ti-addition. Melts were performed in the induction furnace crucible capacity of 15 kg. During the heats the cup with installed S type thermocouple was poured to record the cooling curves. The cylinders were subjected to the static bending strength test. Samples for the test microstructure and Rockwell hardness were cut from the cylinders. The study shows that the addition of titanium had an impact on the structure and thus the properties of High Chromium Cast Iron (HCCI). In subsequent studies, through an appropriate choice of chemical composition and proper process control, it is planned to obtain in the structure the titanium carbides TiC and chromium carbides with type (Cr, Fe)7C3.
Go to article

Abstract

The paper presents the results of preliminary research on the use of silica sands with hydrated sodium silicate 1.5% wt. of binder for the performance of eco-friendly casting cores in hot-box technology. To evaluate the feasibility of high quality casting cores performed by the use of this method, the tests were made with the use of a semiautomatic core shooter using the following operating parameters: initial shooting pressure of 6 bar, shot time 4 s and 2 s, core-box temperature 200, 250 and 300 °C and core heating time 30, 60, 90 and 150 s. Matrixes of the moulding sands were two types of high-silica sand: fine and medium. Moulding sand binder was a commercial, unmodified hydrated sodium silicate having a molar module SiO2/Na2O of 2.5. In one shot of a core-shooter were made three longitudinal samples (cores) with a total volume of about 2.8 dm3. The samples thus obtained were subjected to an assessment of the effect of shooting parameters, i.e. shooting time, temperature and heating time, using the criteria: core-box fill rate, bending strength (RgU), apparent density and surface quality after hardening. The results of the trials on the use of sodium silicate moluding sands made it possible to further refine the conditions of next research into the improvement of inorganic warm-box/hot-box technology aimed at: reduction of heating temperature and shot time. It was found that the performance of the cores depends on the efficiency of the venting system, shooting time, filling level of a shooting chamber and grains of the silica matrix used.
Go to article

Abstract

The paper presents results of bend tests at elevated temperatures of aluminium alloy EN AC-44200 (AlSi12) based composite materials reinforced with aluminium oxide particles. The examined materials were manufactured by squeeze casting. Preforms made of Al2O3 particles, with volumetric fraction 10, 20, 30 and 40 vol.% of particles joined with sodium silicate bridges were used as reinforcement. The preforms were characterised by open porosity ensuring proper infiltration with the EN AC-44200 (AlSi12) liquid alloy. The largest bending strength was found for the materials containing 40 vol.% of reinforcing ceramic particles, tested at ambient temperature. At increased test temperature, bending strength Rg of composites decreased in average by 30 to 50 MPa per 100°C of temperature increase. Temperature increase did not significantly affect cracking of the materials. Cracks propagated mainly along the interfaces particle/matrix, with no effect of the particles falling-out from fracture surfaces. Direction of cracking can be affected by a small number of agglomerations of particles or of non-reacted binder. In the composites, the particles strongly restrict plastic deformation of the alloy, which leads to creation of brittle fractures. At elevated temperatures, however mainly at 200 and 300°C, larger numbers of broken, fragmented particles was observed in the vicinity of cracks. Fragmentation of particles occurred mainly at tensioned side of the bended specimens, in the materials with smaller fraction of Al2O3 reinforcement, i.e. 10 and 20 vol.%.
Go to article

Abstract

The results of investigations of the influence of the matrix grain sizes on properties of cores made by the blowing method are presented in the hereby paper. Five kinds of matrices, differing in grain size compositions, determined by the laser diffraction method in the Analysette 22NanoTec device, were applied in investigations. Individual kinds of matrices were used for making core sands in the Cordis technology. From these sands the shaped elements, for determining the apparent density of compacted sands and their bending strength, were made by the blowing method. The shaped elements (cores) were made at shooting pressures being 3, 4 and 5 atn. The bending strength of samples were determined directly after their preparation and after the storing time of 1 hour.
Go to article

Abstract

Bending strength, thermal and electric conductivity and microstructure examinations of Cu based composite materials reinforced with Saffil alumina fibres are presented. Materials were produced by squeeze casting method applying the designed device and specially elaborated production parameters. Applying infiltration pressure of 90MPa and suitable temperature parameters provided manufacturing of copper based composite materials strengthened with Saffil alumina fibres characterized by the low rest porosity and good fibre-matrix interface. Three point bending tests at temperatures of 25, 100 and 300ºC were performed on specimens reinforced with 10, 15 and 20% of Saffil fibres. Introduced reinforcement effected on the relatively high bending strengths at elevated temperatures. In relation to unreinforced Cu casting strength of composite material Cu – 15vol.% Saffil fibres increase by about 25%, whereas at the highest applied test temperature of 300o C the improvement was almost 100%. Fibres by strengthening of the copper matrix and by transferring loads from the matrix reduce its plastic deformation and hinder the micro-crack developed during bending tests. Decreasing of thermal and electrical conductivity of Cu after incorporating fibres in the matrix are relatively small and these properties can be acceptable for electric and thermal applications.
Go to article

Abstract

The subject of this paper was to compare the influence of selected coatings on bending strength of moulds and cores manufactured in a furan technology. In a range of study, there were used three kinds of coatings - water based coating and two kind of alcohol based coating manufactured by FOSECO. Coating were applicated by brush, overpouring/flow and spraying. For each application method, there were realized different kind of drying- at ambient temperature, in a furnace and by burning. Physicochemical properties of coatings were such selected to accommodate them to the application method and type of coating. Based on the conducted studies it was observed that for water based coating application method doesn’t have an important influence on bending strength and it is necessary to optimize the time and temperature of drying to achieve better results of bending strength. For alcohol based coatings, drying by burning causes significant deterioration of bending strength of the mould and core and drying process at ambient allows to obtain high bending strength of mould/cores in regard to time of drying.
Go to article

This page uses 'cookies'. Learn more