Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 7
items per page: 25 50 75
Sort by:

Abstract

The mathematical model and numerical simulations of the solidification of a cylindrical shaped casting, which take into account the process of filling the mould cavity by liquid metal and feeding the casting through the riser during its solidification, are presented in the paper. Mutual dependence of thermal and flow phenomena were taken into account because have an essential influence on solidification process. The effect of the riser shape on the effectiveness of feeding of the solidifying casting was determined. In order to obtain the casting without shrinkage defects, an appropriate selection of riser shape was made, which is important for foundry practice. Numerical calculations of the solidification process of system consisting of the casting and the conical or cylindrical riser were carried out. The velocity fields have been obtained from the solution of momentum equations and continuity equation, while temperature fields from solving the equation of heat conductivity containing the convection term. Changes in thermo-physical parameters as a function of temperature were considered. The finite element method (FEM) was used to solve the problem.
Go to article

Abstract

Defects affect the properties and behavior of the casting during its service life. Since the defects can occur due to different reasons, they must be correctly identified and categorized, to enable applying the appropriate remedial measures. several different approaches for categorizing casting defects have been proposed in technical literature. They mainly rely on physical description, location, and formation of defects. There is a need for a systematic approach for classifying investment casting defects, considering appropriate attributes such as their size, location, identification stage, inspection method, consistency, appearance of defects. A systematic approach for categorization of investment casting defects considering multiple attributes: detection stage, size, shape, appearance, location, consistency and severity of occurrence. Information about the relevant attributes of major defects encountered in investment casting process has been collected from an industrial foundry. This has been implemented in a cloud-based system to make the system freely and widely accessible.
Go to article

Abstract

Metal casting process involves processes such as pattern making, moulding and melting etc. Casting defects occur due to combination of various processes even though efforts are taken to control them. The first step in the defect analysis is to identify the major casting defect among the many casting defects. Then the analysis is to be made to find the root cause of the particular defect. Moreover, it is especially difficult to identify the root causes of the defect. Therefore, a systematic method is required to identify the root cause of the defect among possible causes, consequently specific remedial measures have to be implemented to control them. This paper presents a systematic procedure to identify the root cause of shrinkage defect in an automobile body casting (SG 500/7) and control it by the application of Pareto chart and Ishikawa diagram. with quantitative Weightage. It was found that the root causes were larger volume section in the cope, insufficient feeding of riser and insufficient poured metal in the riser. The necessary remedial measures were taken and castings were reproduced. The shrinkage defect in the castings was completely eliminated.
Go to article

Abstract

The article contains basic information associated with the impact of the FSW process parameters on the forming of a weld while friction welding of aluminium casting alloys. Research was conducted using specially made samples containing a rod of casting alloy mounted in the wrought alloy in the selected area of FSW tool acting. Research has thrown light on the process of joining materials of significantly dissimilar physical properties, such as casting alloys and wrought alloys. Metallographic testing of a weld area has revealed the big impact of welding conditions, especially tool rotational speed, on the degree of metal stirring, grain refinement and shape factor of a weld. As the result of research it has been stated that at the high tool rotational speed, the metals stirring in a weld is significantly greater than in case of welding at low rotational speeds, however this fails to influence the strength of a weld. Plastic strain occurring while welding causes very high refinement of particles in the tested area and changing of their shape towards particles being more equiaxial. In the properly selected welding conditions it is possible to obtain joints of correct and repeatable structure, however in the case of the accumulation of cavities in the casting alloy the FSW process not always eliminates them.
Go to article

Abstract

The article describes the detection of a defect in a cast iron casting. It analyzes the cause of the crack in the Turbine Component casting. In this article, we are focusing on a particular turbine casting that is commonly used in automobiles as one of the components for turbochargers. The turbine is a casting made of ductile cast iron with a visible crack on the naked eye. The formation of cracks in castings is a common but undesirable phenomenon in the foundry practice. It is important to identify the errors, but also to know the cause of defects in castings. The solution is a detailed error analysis. In this paper I used metallographic analysis and magnetic powder method. The crack formation is due to tension in the casting, which results in tensile, shear, or shear forces. The crack formation kinetics is difficult because it is still very low during hardening and shortly after the casting is overloaded. The crack is most often due to core resistance or shrinkage molds that begin after the surface layer is tightened when the strength of the material is negligible to the end of the crystallisation.
Go to article

Abstract

The Mg-RE alloys are attractive, constructional materials, especially for aircraft and automotive industry, thanks to combination of low density, good mechanical properties, also at elevated temperature, and good castability and machinability. Present paper contains results of fatigue resistance test carried out on Elektron 21 magnesium alloy, followed by microstructural and fractographical investigation of material after test. The as-cast material has been heat treated according to two different procedures. The fatigue resistance test has been conducted with 106 cycles of uniaxial, sine wave form stress between 9 MPa and 90 MPa. Fractures of specimens, which ruptured during the test, have been investigated with scanning electron microscope. The microstructure of specimens has been investigated with light microscopy. Detrimental effect of casting defects, as inclusions and porosity, on fatigue resistance has been proved. Also the influence of heat treatment's parameters has been described.
Go to article

Abstract

The main bulk density representation in the molding material is opening material, refractory granular material with a particle size of 0.02 mm. It forms a shell molds and cores, and therefore in addition to activating the surface of the grain is one of the most important features angularity and particle size of grains. These last two features specify the porosity and therefore the permeability of the mixture, and thermal dilatation of tension from braking dilation, the thermal conductivity of the mixture and even largely affect the strength of molds and cores, and thus the surface quality of castings. [1] Today foundries, which use the cast iron for produce of casts, are struggling with surface defects on the casts. One of these defects are veining. They can be eliminated in several ways. Veining are foundry defects, which arise as a result of tensions generated at the interface of the mold and metal. This tension also arises due to abrupt thermal expansion of silica sand and is therefore in the development of veining on the surface of casts deal primarily influences and characteristics of the filler material – opening material in the production of iron castings.
Go to article

This page uses 'cookies'. Learn more