Search results

Filters

  • Journals
  • Date

Search results

Number of results: 4
items per page: 25 50 75
Sort by:

Abstract

This paper focuses on the radio direction finding (DF) in multipath environments. Based on the measurement results presented in the open literature, the authors analyse the influence of environment transmission properties on the spread of the signal reception angle. Parameters that define these properties are rms delay and angle spreads. For these parameters, the mutual relationship is determined. This relationship is the basis for assessment of the required number of bearings that minimize the influence of the environment on the accuracy of DF procedure. In the presented analysis, the statistical properties of the signal reception angle are approximated by the normal distribution. The number of bearings versus the rms delay spread is presented as the main objective of this paper. In addition, a methodology of the bearings’ spatial averaging that provides better estimation of the reception angle is shown.
Go to article

Abstract

The article presents a zero-dimensional mathematical model of a tubular fuel cell and its verification on four experiments. Despite the fact that fuel cells are still rarely used in commercial applications, their use has become increasingly more common. Computational Flow Mechanics codes allow to predict basic parameters of a cell such as current, voltage, combustion composition, exhaust temperature, etc. Precise models are particularly important for a complex energy system, where fuel cells cooperate with gas, gas-steam cycles or ORCs and their thermodynamic parameters affect those systems. The proposed model employs extended Nernst equation to determine the fuel cell voltage and steadystate shifting reaction equilibrium to calculate the exhaust composition. Additionally, the reaction of methane reforming and the electrochemical reaction of hydrogen and oxygen have been implemented into the model. The numerical simulation results were compared with available experiment results and the differences, with the exception of the Tomlin experiment, are below 5%. It has been proven that the increase in current density lowers the electrical efficiency of SOFCs, hence fuel cells typically work at low current density, with a corresponding efficiency of 45–50% and with a low emission level (zero emissions in case of hydrogen combustion).
Go to article

This page uses 'cookies'. Learn more