Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 66
items per page: 25 50 75
Sort by:

Abstract

In this article the structural and mechanical properties of grain refinement of Cu-Sn alloys with tin content of 10%, 15% and 20% using the KOBO method have been presented. The direct extrusion by KOBO (name from the combination of the first two letters of the names of its inventors – A. Korbel and W. Bochniak) method employs, during the course of the whole process, a phenomenon of permanent change of strain travel, realized by a periodical, two-sided, plastic metal torsion. Moreover the aim of this work was to study corrosion resistance. The microstructure investigations were performed using an optical microscope Olimpus GX71, a scanning electron microscope (SEM) and a scanning transmission electron microscope (STEM). The mechanical properties were determined with INSTRON 4505/5500 machine. Corrosion tests were performed using «Autolab» set – potentiostat/galvanostat from EcoChemie B.V. with GPES software ver. 4.9. The obtained results showed possibility of KOBO deformation of Cu-Sn casting alloys. KOBO processing contributed to the refinement of grains and improved mechanical properties of the alloys. The addition of tin significantly improved the hardness. Meanwhile, with the increase of tin content the tensile strength and yield strength of alloys decrease gradually. Ductility is controlled by eutectoid composition and especially δ phase, because they initiate nucleation of void at the particle/matrix interface. No significant differences in the corrosion resistance between cast and KOBO processed materials were found.
Go to article

Abstract

Animals as a source of organs and tissues for xenotransplantation could become a backup solution for the growing shortage of human donors. The presence of human xenoreactive anti- bodies directed against Galα1,3Gal antigens on the cell surface of a pig donor triggers the activa- tion of the complement leading to a hyperacute reaction. The development of genetic engineer- ing techniques has enabled the modification of genomes by knocking in and/or knocking out genes. In this paper, we report the generation of modified pigs with ZFN mediated disruption of the GGTA1 gene encoding the enzyme responsible for synthesis of Galα1,3Gal antigens. ZFN plasmids designed to target the exon 9 region of the pig GGTA1 gene encoding the catalytic domain were injected into the pronuclei of fertilized egg cells. Among 107 piglets of the F0 gene- ration analyzed, one female with 9-nt deletion in exon 9 of the GGTA1 gene was found. 13 of 33 piglets of the F1 generation represented the +/- GGTA1 genotype and 2 of 13 F2 piglets repre- sented the -/- GGTA1 genotype. No changes in the animals’ behavior, phenotype or karyotype were observed. Analysis confirmed heredity of the trait in all animals. A complex functional analysis of the modified animals, including flow cytometry, human serum cytotoxicity test and immunohistochemical detection, was performed to estimate the phenotype effect of genetic modification and this indicated an efficient GGTA1 knock-out in modified pigs.
Go to article

Abstract

In the aluminium alloy family, Al-Zn materials with non-standard chemical composition containing Mg and Cu are a new group of alloys, mainly owing to their high strength properties. Proper choice of alloying elements, and of the method of molten metal treatment and casting enable further shaping of the properties. One of the modern methods to produce materials with submicron structure is a method of Rapid Solidification. The ribbon cast in a melt spinning device is an intermediate product for further plastic working. Using the technique of Rapid Solidification it is not possible to directly produce a solid structural material of the required shape and length. Therefore, the ribbon of an ultrafine grain or nanometric structure must be subjected to the operations of fragmentation, compaction, consolidation and hot extrusion. In this article the authors focussed their attention on the technological aspect of the above mentioned process and described successive stages of the fabrication of an AlZn9Mg2.5Cu1.8 alloy of ultrafine grain structure designated for further plastic working, which enables making extruded rods or elements shaped by the die forging technology. Studies described in the article were performed under variable parameters determined experimentally in the course of the alloy manufacturing process, including casting by RS and subsequent fragmentation.
Go to article

Abstract

The fundamental concepts of nano and quantum systems of informatics have been presented. The nanotechnological processes taking place in biological systems of informatics have been discussed in terms of informatics. Presented analysis shows that the application of nanotechnologies in the technical informatic systems enables realization of processes for formation of products and objects with self-replication feature, similarly to the processes existing in biological informatic systems. It seems also that the quantum technologies enable further miniaturization of the technical systems of informatics as well as make the execution time of some computing processes like, e.g. Shor's and Grover's algorithms, shorter.
Go to article

Abstract

The study presents the results of research on the development of composite zones in castings based on the intermetallic phase of Ni3Al. Composite zones were obtained by placing packets with substrates for the reaction of titanium carbide in a foundry mould. To provide a variable carbides content in the composite zone, two compositions of the packets were prepared. The first packet contained only substrates for the reaction of TiC synthesis; the second one also contained a filler. The resulting composite zones in castings were examined for the filler effect on changes in the volume fraction, size and morphology of carbides in the zone. In addition, the effect of filler on the mechanical properties of the zone was verified, observing changes of Vickers hardness in this area. It was found that the presence of filler in the composition of the packet for synthesis reduced the content of carbides, as well as their size and morphology. Lower surface content of carbides reduced hardness of the zone, which enabled smooth control of the mechanical properties. At the same time, the use of the selected filler did not disturb the course of the TiC carbide synthesis.
Go to article

Abstract

This work discusses the heat transfer aspects of the neonate’s brain cooling process carried out by the the device to treat hypoxic-ischemic encephalopathy. This kind of hypothermic therapy is undertaken in case of improper blood circulation during delivery which causes insufficient transport of oxygen to the brain and insufficient cooling of the brain by circulating blood. The experimental setup discussed in this manuscript consists of a special water flow meter and two temperature sensors allowing to measure inlet and outlet water temperatures. Collected results of the measurements allowed to determine time histories of the heat transfer rate transferred from brain to the cooling water for three patients. These results are then analysed and compared among themselves.
Go to article

Abstract

Recently, a new class of ceramic foams with porosity levels up to 90% has been developed as a result of the association of the gelcasting process and aeration of the ceramic suspension. This paper presents and discusses original results advertising sound absorbing capabilities of such foams. The authors man- ufactured three types of alumina foams in order to investigate three porosity levels, namely: 72, 88, and 90%. The microstructure of foams was examined and typical dimensions and average sizes of cells (pores) and cell-linking windows were found for each porosity case. Then, the acoustic absorption coefficient was measured in a wide frequency range for several samples of various thickness cut out from the foams. The results were discussed and compared with the acoustic absorption of typical polyurethane foams proving that the alumina foams with high porosity of 88-90% have excellent sound absorbing properties competitive with the quality of sound absorbing PU foams of higher porosity.
Go to article

This page uses 'cookies'. Learn more