Search results


  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 1
items per page: 25 50 75
Sort by:


A hybrid artificial boundary condition (HABC) that combines the volume-based acoustic damping layer (ADL) and the local face-based characteristic boundary condition (CBC) is presented to enhance the absorption of acoustic waves near the computational boundaries. This method is applied to the prediction of aerodynamic noise from a circular cylinder immersed in uniform compressible viscous flow. Different ADLs are designed to assess their effectiveness whereby the effect of the mesh-stretch direction on wave absorption in the ADL is analysed. Large eddy simulation (LES) and FW-H acoustic analogy method are implemented to predict the far-field noise, and the sensitivities of each approach to the HABC are compared. In the LES computed propagation field of the fluctuation pressure and the frequency-domain results, the spurious reflections at edges are found to be significantly eliminated by the HABC through the effective dissipation of incident waves along the wave-front direction in the ADL. Thereby, the LES results are found to be in a good agreement with the acoustic pressure predicted using FW-H method, which is observed to be just affected slightly by reflected waves.
Go to article

This page uses 'cookies'. Learn more