Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 4
items per page: 25 50 75
Sort by:

Abstract

The locally resonant sonic material (LRSM) is an artificial metamaterial that can block underwater sound. The low-frequency insulation performance of LRSM can be enhanced by coupling local resonance and Bragg scattering effects. However, such method is hard to be experimentally proven as the best optimizing method. Hence, this paper proposes a statistical optimization method, which first finds a group of optimal solutions of an object function by utilizing genetic algorithm multiple times, and then analyzes the distribution of the fitness and the Euclidean distance of the obtained solutions, in order to verify whether the result is the global optimum. By using this method, we obtain the global optimal solution of the low-frequency insulation of LRSM. By varying parameters of the optimum, it can be found that the optimized insulation performance of the LRSM is contributed by the coupling of local resonance with Bragg scattering effect, as well as a distinct impedance mismatch between the matrix of LRSM and the surrounding water. This indicates coupling different effects with impedance mismatches is the best method to enhance the low-frequency insulation performance of LRSM.
Go to article

Abstract

The technology for gob-side entry retaining in steep coal seams is still in the development stage. The analysis results of the caving structure of main roof, low influence of gateway’s stability because of long filling distance and weak dynamic effect of the gateway, and the low stress redistribution environment indicate that using this technology in steep coal seams has significant advantages. Moreover, to reinforce the waste rock and the soft floor and to better guard against the impact of the waste rock during natural filling, a rock blocking device and grouting reinforcement method were invented, and theoretical calculations result show that the blocking device has high safety factor. In addition, we also developed a set of hydraulic support devices for use in the strengthening support zone. Furthermore, because the retaining gateway was a systematic project, the selection of the size and shape of the gateway cross section and its support method during the initial driving stage is a key step. Thus, first, a section the size of bottom width and roof height of a new gateway was determined to meet any related requirements. Then, according to the cross sections of 75 statistical gateways and the support technique, it chosen a trapezoidal cross section when the dip of the coal seam is 35° < α ≤ 45°, a special and an inclined arch cross section when 45° < α ≤ 55°. Eventually, a support system of bolts and cables combined with steel mesh and steel belts was provided. The support system used optimized material and improved parameters, can enhanced the self-bearing ability of the surrounding coal and rock masses.
Go to article

Abstract

Contamination of soil with heavy metals has become a worldwide environmental problem, and receives great attention. In this study, we aim to investigate soil pollution level affected by an industrial district nearby. The total amount of typical heavy metals in the soils (Hengyang Songmu Industrial Park, Hunan Province, China) was analyzed. In addition, the fraction analysis and laboratory simulation leaching via different pH rainwater was carried out to study the migration and transformation of heavy metals. The main results show that the contents of Cu, Zn, Pb, Cr and Cd in the samples were higher than the soil background values in Hunan Province. The heavy metals forms, analyzed by sequential extraction method, show that the proportion of the unstable form of Cd, Zn and Pb was more than 50%. Igeo values indicate that the heavy metal pollution degree of soil sample #5 at the investigated area is recorded in the order of Cd(6.42), Zn(2.28), Cu(1.82), Pb(1.63), and Cr(0.37). Cu, Zn, Pb, Cr and Cd in this area could pose a potential leaching risk to the environment which may affect the food chain and constitute a threat to human health. It would be necessary to take steps to stabilize and monitor the heavy metals in soil.
Go to article

Abstract

The heavy metal release experiments were conducted in the laboratory to examine the effects of 3 factors - pH, dissolved oxygen (DO), and temperature on the metal release from sediments taken from the Huangpu River. The metal concentrations in the dry sediments ranged from 0.030 to 0.296 mg g-1 for Cr, 0.021 to 0.097 mg g-1 for Ni, 0.014 to 0.219 mg g-1 for Cu, 0.035 mg to 0.521 mg g-1 for Zn, 0.0002 to 0.001 mg g-1 for Cd and 0.023 to 0.089 mg g-1 for Pb. Most of the metals found in the sediments were in the form of residual fraction, the exchangeable fraction consisted of only a small portion of total metals. The average dissolved metal concentrations in the overlying water during the 13-day period under different conditions were ranging from 0.82 to 1.93 μg L-1 for Cr, 1.08 to 4.19 μg L-1 for Ni, 40.79 to 82.28 μg L-1 for Cu, 20.30 to 29.96 μg L-1 for Zn, 1.57 to 4.07 μg L-1 for Cd, and 22.26 to 75.50 μg L-1 for Pb, respectively. Statistical interpretation of the data indicated that pH (7, 8, 9), dissolved oxygen DO (1.0 and 5.0 mg L-1) and temperature (4, 16, 25°C) had no significant effects on the heavy metal release under the studied conditions. Cu and Pb had the highest release flux, while Cd, Pb and Cu had higher mobility. The main factors controlling the metals release might be the inherent characters of metals and sediments.
Go to article

This page uses 'cookies'. Learn more