Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 8
items per page: 25 50 75
Sort by:

Abstract

We derive exact and approximate controllability conditions for the linear one-dimensional heat equation in an infinite and a semi-infinite domains. The control is carried out by means of the time-dependent intensity of a point heat source localized at an internal (finite) point of the domain. By the Green’s function approach and the method of heuristic determination of resolving controls, exact controllability analysis is reduced to an infinite system of linear algebraic equations, the regularity of which is sufficient for the existence of exactly resolvable controls. In the case of a semi-infinite domain, as the source approaches the boundary, a lack of L2-null-controllability occurs, which is observed earlier by Micu and Zuazua. On the other hand, in the case of infinite domain, sufficient conditions for the regularity of the reduced infinite system of equations are derived in terms of control time, initial and terminal temperatures. A sufficient condition on the control time, heat source concentration point and initial and terminal temperatures is derived for the existence of approximately resolving controls. In the particular case of a semi-infinite domain when the heat source approaches the boundary, a sufficient condition on the control time and initial temperature providing approximate controllability with required precision is derived.
Go to article

Abstract

Abstract We propose a generalization of the Butkovskiy's method of control with compact support [1] allowing to derive exact controllability conditions and construct explicit solutions in control problems for systems with distributed parameters. The idea is the introduction of a new state function which is supported in considered bounded time interval and coincides with the original one therein. By means of techniques of the distributions theory the problem is reduced to an interpolation problem for Fourier image of unknown function or to corresponding system of integral equalities. Treating it as infinite dimensional problem of moments, its L1, L2 and L∞-optimal solutions are constructed explicitly. The technique is explained for semilinear wave equation with distributed and boundary controls. Particular cases are discussed.
Go to article

Abstract

We study the exact and approximate controllabilities of the Langevin equation describing the Brownian motion of particles with a white noise. The Langevin equation is shown to describe also the bacterial run-and-tumble motion. Applying the Green’s function approach to the Green’s function representation of the Langevin equation, we obtain necessary and sufficient conditions for exact controllability in the form of a finite-dimensional problem of moments. For the approximate controllability, we obtain only sufficient conditions. The sets of resolving controls are characterized in both cases. The theoretical derivations are supported by a numerical analysis.
Go to article

Abstract

The constrained averaged controllability of linear one-dimensional heat equation defined on R and R+ is studied. The control is carried out by means of the time-dependent intensity of a heat source located at an uncertain interval of the corresponding domain, the end-points of which are considered as uniformly distributed random variables. Employing the Green’s function approach, it is shown that the heat equation is not constrained averaged controllable neither in R nor in R+. Sufficient conditions on initial and terminal data for the averaged exact and approximate controllabilities are obtained. However, constrained averaged controllability of the heat equation is established in the case of point heat source, the location of which is considered as a uniformly distributed random variable. Moreover, it is obtained that the lack of averaged controllability occurs for random variables with arbitrary symmetric density function.
Go to article

Abstract

The Bulletin of the Polish Academy of Sciences: Technical Sciences (Bull.Pol. Ac.: Tech.) is published bimonthly by the Division IV Engineering Sciences of the Polish Academy of Sciences, since the beginning of the existence of the PAS in 1952. The journal is peer‐reviewed and is published both in printed and electronic form. It is established for the publication of original high quality papers from multidisciplinary Engineering sciences with the following topics preferred: Artificial and Computational Intelligence, Biomedical Engineering and Biotechnology, Civil Engineering, Control, Informatics and Robotics, Electronics, Telecommunication and Optoelectronics, Mechanical and Aeronautical Engineering, Thermodynamics, Material Science and Nanotechnology, Power Systems and Power Electronics. Journal Metrics: JCR Impact Factor 2018: 1.361, 5 Year Impact Factor: 1.323, SCImago Journal Rank (SJR) 2017: 0.319, Source Normalized Impact per Paper (SNIP) 2017: 1.005, CiteScore 2017: 1.27, The Polish Ministry of Science and Higher Education 2017: 25 points. Abbreviations/Acronym: Journal citation: Bull. Pol. Ac.: Tech., ISO: Bull. Pol. Acad. Sci.-Tech. Sci., JCR Abbrev: B POL ACAD SCI-TECH Acronym in the Editorial System: BPASTS.
Go to article

Abstract

Abstract Distribution optimization of elastic material under elastic isotropic rectangular thin plate subjected to concentrated moving load is investigated in the present paper. The aim of optimization is to damp its vibrations in finite (fixed) time. Accepting Kirchhoff hypothesis with respect to the plate and Winkler hypothesis with respect to the base, the mathematical model of the problem is constructed as two-dimensional bilinear equation, i.e. linear in state and control function. The maximal quantity of the base material is taken as optimality criterion to be minimized. The Fourier distributional transform and the Bubnov-Galerkin procedures are used to reduce the problem to integral equality type constraints. The explicit solution in terms of two- dimensional Heaviside‘s function is obtained, describing piecewise-continuous distribution of the material. The determination of the switching points is reduced to a problem of nonlinear programming. Data from numerical analysis are presented.
Go to article

This page uses 'cookies'. Learn more