Search results

Filters

  • Journals
  • Date

Search results

Number of results: 9
items per page: 25 50 75
Sort by:

Abstract

Paper present a thermal analysis of laser heating and remelting of EN AC-48000 (EN AC-AlSi12CuNiMg) cast alloy used mainly for casting pistons of internal combustion engines. Laser optics were arranged such that the impingement spot size on the material was a circular with beam radius rb changes from 7 to 1500 m. The laser surface remelting was performed under argon flow. The resulting temperature distribution, cooling rate distribution, temperature gradients and the depth of remelting are related to the laser power density and scanning velocity. The formation of microstructure during solidification after laser surface remelting of tested alloy was explained. Laser treatment of alloy tests were perform by changing the three parameters: the power of the laser beam, radius and crystallization rate. The laser surface remelting needs the selection such selection of the parameters, which leads to a significant disintegration of the structure. This method is able to increase surface hardness, for example in layered castings used for pistons in automotive engines.
Go to article

Abstract

Suitability of the given binding agent for the moulding sands preparation depends on the one hand on the estimation of technological properties of the sand and the mould made of it and the obtained casting quality and on the other hand on the assessment of this sand influence on the natural and working environment. Out of moulding sands used in the foundry industry, sands with organic binders deserve a special attention. These binders are based on synthetic resins, which ensure obtaining the proper technological properties and sound castings, however, they negatively influence the environment. If in the initial state these resins are not very dangerous for people and for the environment, thus under an influence of high temperatures they generate very harmful products, being the result of their thermal decomposition. Depending on the kind of the applied resin (phenol-formaldehyde, urea, furfuryl, urea–furfuryl, alkyd) under an influence of a temperature such compounds as: furfuryl alcohol, formaldehyde, phenol, BTEX group (benzene, toluene, ethylbenzene, xylene), and also polycyclic aromatic hydrocarbons (PAH) can be formed and released. The aim of the study was the development of the method, selection of analytical methods and the determination of optimal conditions of formation compounds from the BTEX group. An emission of these components constitutes one of the basic criteria of the harmfulness assessment of binders applied for moulding and core sands. Investigations were carried out in the specially designed set up for the thermal decomposition of organic substances in a temperature range: 5000 C – 13000 C at the laboratory scale. The object for testing was alkyd resin applied as a binding material for moulding sands. Within investigations the minimal amount of adsorbent necessary for the adsorption of compounds released during the decomposition of the resin sample of a mass app. 15 mg was selected. Also the minimal amount of solvent needed for the desorption of compounds adsorbed in the column with adsorbent was found. The temperature range, in which the maximal amounts of benzene, toluene, ethylobenzene and xylenes are released from the resin, was defined. The qualitative and quantitative analyses of compounds from the BTEX group were performed by means of the gas chromatography combined with the mass spectrometry (GC/MS).
Go to article

Abstract

The paper presents the results of an investigation of the thermal deformation of moulding sands with an inorganic (geopolymer) binder with a relaxation additive, whose main task is to reduce the final (residual) strength and improves knocking-out properties of moulding sand. The moulding sand without a relaxation additive was the reference point. The research was carried out using the hot-distortion method (DMA apparatus from Multiserw-Morek). The results were combined with linear deformation studies with determination of the linear expansion factor (Netzsch DIL 402C dilatometer). The study showed that the introduction of relaxation additive has a positive effect on the thermal stability of moulding sand by limiting the measured deformation value, in relation to the moulding sand without additive. In addition, a relaxation additive slightly changes the course of the dilatometric curve. Change in the linear dimension of the moulding sand sample with the relaxation additive differs by only 0.05%, in comparison to the moulding sand without additive.
Go to article

Abstract

This paper describes a design process of HALE PW-114 sensor-craft, developed for high altitude (20 km) long endurance (40 h) surveillance missions. Designed as a blended wing (BW) configuration, to be made of metal and composite materials. Wing control surfaces provide longitudinal balance. Fin in the rear fuselage section together with wingtips provide directional stability. Airplane is equipped with retractable landing gear with controlled front leg that allows operations from conventional airfields. According to the initial requirements it is twin engine configuration, typical payload consists of electro-optical/infra-red FLIR, big SAR (synthetic aperture radar) and SATCOM antenna required for the longest range. Tailless architecture was based on both Horten and Northrop design experience. Global Hawk was considered as a reference point – it was assumed that BW design has to possess efficiency, relative payload and other characteristics at least the same or even better than that of Global Hawk. FLIR, SAR and SATCOM containers were optimised for best visibility. All payload systems are put into separate modular containers of easy access and quickly to exchange, so this architecture can be consider as a „modular”. An optimisation process started immediately when the so-called “zero configuration”, called PW-111 was ready. It was designed in the canard configuration. A canard was abandoned in HALE PW-113. Instead, new, larger outer wing was designed with smaller taper ratio. New configuration analysis revealed satisfactory longitudinal stability. Calculations suggested better lateral qualities for negative dihedral. These modifications, leading to aerodynamic improvement, gave HALE PW-114 as a result. The design process was an interdisciplinary approach, and included a selection of thick laminar wing section, aerodynamic optimisation of swept wing, stability analysis, weight balance, structural and flutter analysis, many on-board redundant systems, reliability and maintability analysis, safety improvement, cost and performance optimisation. Presented paper focuses mainly on aerodynamics, wing design, longitudinal control and safety issues. This activity is supported by European Union within V FR, in the area Aeronautics and Space.
Go to article

This page uses 'cookies'. Learn more