Search results

Filters

  • Journals

Search results

Number of results: 11
items per page: 25 50 75
Sort by:

Abstract

In this work, numerical modeling of steady state heat and mass transfer is presented. Both laminar and hydrodynamically fully developed turbulent flow in a pipe are shown. Numerical results are compared with values obtained from analytical solution of such problems. The problems under consideration are often denoted as extended Graetz problems. They occur in heat exchangers using liquid metals as working fluid, in cooling systems for electric components or in chemical process lines. Calculations were carried out gradually decreasing the mesh size in order to examine the convergence of numerical method to analytical solution.
Go to article

Abstract

Secure and cost-effective power generation has become very important nowdays. Care must be taken while designing and operating modern steam power plants. There are regulations such as German boiler regulations (Technische Regeln für Dampfkessel 301) or European Standards that guide the user how to operate the steam power plants. However, those regulations are based on the quasi-steady state assumption and one dimensional temperature distribution in the entire element. This simplifications may not guarantee that the heating and cooling operations are conducted in the most efficient way. Thus, it was important to find an improved method that can allow to establish optimum parameters for heating and cooling operations. The optimum parameters should guarantee that the maximum total stresses in the construction element are in the allowable limits and the entire process is conducted in the shortest time. This paper summarizes mathematical descriptions how to optimize shut down process of power block devices. The optimization formulation is based on the assumption that the maximum total stresses in the whole construction element should be kept within allowable limits during cooling operation. Additionally, the operation should be processed in the shortest time possible.
Go to article

Abstract

One of the major concerns of the power energy industries is a proper operation of steam power blocks. Pressurized working medium and high temperature cause very high stresses in the construction elements such as collectors, separators or steam valves. They are exposed to sudden temperature and pressure changes that cause high stresses at certain points. Additionally, the cyclic character of loading causes material fatigue, known as low-cyclic fatigue, which may lead to the formation of fracture. Thus, methodologies offered by many companies should ensure reliable and safe operation of steam power blocks. The advanced numerical solutions for determining time-optimum medium temperature changes are presented. They are based on Levenberg-Marquardt and nonlinear programming by quadratic Lagrangian methods. The methods allow us to find parameters for start-up and shut-down operation that can reduce total stresses to limits governed by European regulations. Furthermore, the heating and cooling operations are conducted in a shortest time possible.
Go to article

Abstract

Modern supercritical power plants operate at very high temperatures and pressures. Thus the construction elements are subjected to both high thermal and mechanical loads. As a result high stresses in those components are created. In order to operate safely, it is important to monitor stresses, especially during start-up and shut-down processes. The maximum stresses in the construction elements should not exceed the allowable stresses that are defined according to boiler regulations. It is important to find optimum operating parameters, that can assure safe heating and cooling processes. The optimum parameters define temperature and pressure histories that can keep the highest stresses within allowable limit and reduce operation time as much as possible. In this paper a new numerical method for determining optimum working fluid parameters is presented. In this method, properties of steel can be assumed as constant or temperature dependent. The constant value is taken usually at the average temperature of the operation cycle. For both cases optimal parameters are determined. Based on these parameters start-up operations for both cases are conducted. During entire processes stresses in the heated element are monitored. The results obtained are compared with German boiler regulations - Technische Regeln fur Dampfkessel 301.
Go to article

Abstract

Construction elements of supercritical power plants are subjected to high working pressures and high temperatures while operating. Under these conditions high stresses in the construction are created. In order to operate safely, it is important to monitor stresses, especially during start-up and shut-down processes. The maximum stresses in the construction elements should not exceed the allowable stress limit. The goal is to find optimum operating parameters that can assure safe heating and cooling processes [1-5]. The optimum parameters should guarantee that the allowable stresses are not exceeded and the entire process is conducted in the shortest time. In this work new numerical method for determining optimum working parameters is presented. Based on these parameters heating operations were conducted. Stresses were monitored during the entire processes. The results obtained were compared with the German boiler regulations - Technische Regeln für Dampfkessel 301.
Go to article

Abstract

In this paper, the influence of impact damage to the induction motors on the zero-sequence voltage and its spectrum is presented. The signals detecting the damages result from a detailed analysis of the formula describing this voltage component which is induced in the stator windings due to core magnetic saturation and the discrete displacement of windings. Its course is affected by the operation of both the stator and the rotor. Other fault detection methods, are known and widely applied by analysing the spectrum of stator currents. The presented method may be a complement to other methods because of the ease of measurements of the zero voltage for star connected motors. Additionally, for converter fed motors the zero sequence voltage eliminates higher time harmonics displaced by 120 degrees. The results of the method application are presented through measurements and explained by the use of a mathematical model of the slip-ring induction motor.
Go to article

Abstract

Modern production technology requires new ways of surface examination and a special kind of surface profile parameters. Industrial quality inspection needs to be fast, reliable and inexpensive. In this paper it is shown how stochastic surface examination and its proper parameters could be a solution for many industrial problems not necessarily related with smoothing out a manufactured surface. Burnishing is a modern technology widely used in aircraft and automotive industries to the products as well as to process tools. It gives to the machined surface high smoothness, and good fatigue and wear resistance. Every burnished material behaves in a different manner. Process conditions strongly influence the final properties of any specific product. Optimum burnishing conditions should be preserved for any manufactured product. In this paper we deal with samples made of conventional tool steel – Sverker 21 (X153CrMoV12) and powder metallurgy (P/M) tool steel – Vanadis 6. Complete investigations of product properties are impossible to perform (because of constraints related to their cost, time, or lack of suitable equipment). Looking for a global, all-embracing quality indicator it was found that the correlation function and the frequency analysis of burnished surface give useful information for controlling the manufacturing process and evaluating the product quality. We propose three new indicators of burnishing surface quality. Their properties and usefulness are verified with the laboratory measurement of material samples made of the two mentioned kinds of tool steel.
Go to article

Abstract

The requirements for environmentally friendly refrigerants promote application of CO2and water as working fluids. However there are two problems related to that, namely high temperature limit for CO2in condenser due to the low critical temperature, and low temperature limit for water being the result of high triple point temperature. This can be avoided by application of the hybrid adsorption-compression system, where water is the working fluid in the adsorption high temperature cycle used to cool down the CO2compression cycle condenser. The adsorption process is powered with a low temperature renewable heat source as solar collectors or other waste heat source. The refrigeration system integrating adsorption and compression system has been designed and constructed in the Laboratory of Thermodynamics and Thermal Machine Measurements of Cracow University of Technology. The heat source for adsorption system consists of 16 tube tulbular collectors. The CO2compression low temperature cycle is based on two parallel compressors with frequency inverter. Energy efficiency and TEWI of this hybrid system is quite promising in comparison with the compression only systems.
Go to article

This page uses 'cookies'. Learn more