Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 7
items per page: 25 50 75
Sort by:

Abstract

The Bulletin of the Polish Academy of Sciences: Technical Sciences (Bull.Pol. Ac.: Tech.) is published bimonthly by the Division IV Engineering Sciences of the Polish Academy of Sciences, since the beginning of the existence of the PAS in 1952. The journal is peer‐reviewed and is published both in printed and electronic form. It is established for the publication of original high quality papers from multidisciplinary Engineering sciences with the following topics preferred: Artificial and Computational Intelligence, Biomedical Engineering and Biotechnology, Civil Engineering, Control, Informatics and Robotics, Electronics, Telecommunication and Optoelectronics, Mechanical and Aeronautical Engineering, Thermodynamics, Material Science and Nanotechnology, Power Systems and Power Electronics. Journal Metrics: JCR Impact Factor 2018: 1.361, 5 Year Impact Factor: 1.323, SCImago Journal Rank (SJR) 2017: 0.319, Source Normalized Impact per Paper (SNIP) 2017: 1.005, CiteScore 2017: 1.27, The Polish Ministry of Science and Higher Education 2017: 25 points. Abbreviations/Acronym: Journal citation: Bull. Pol. Ac.: Tech., ISO: Bull. Pol. Acad. Sci.-Tech. Sci., JCR Abbrev: B POL ACAD SCI-TECH Acronym in the Editorial System: BPASTS.
Go to article

Abstract

Flow boiling and flow condensation are often regarded as two opposite or symmetrical phenomena. Their description however with a single correlation has yet to be suggested. In the case of flow boiling in minichannels there is mostly encountered the annular flow structure, where the bubble generation is not present. Similar picture holds for the case of inside tube condensation, where annular flow structure predominates. In such case the heat transfer coefficient is primarily dependent on the convective mechanism. In the paper a method developed earlier by the first author is applied to calculations of heat transfer coefficient for inside tube condensation. The method has been verified using experimental data from literature on several fluids in different microchannels and compared to three well established correlations for calculations of heat transfer coefficient in flow condensation. It clearly stems from the results presented here that the flow condensation can be modeled in terms of appropriately devised pressure drop.
Go to article

Abstract

In this study, the influences of different parameters at performance two-phase closed thermosiphon (TPCT) was presented. It has been confirmed that the working fluid, as well as operating parameters and fill ratio, are very important factors in the performance of TPCT. The article shows characteristics of gravitational tube geometries, as well as the technical characteristic of the most important system components, i.e., the evaporator/condenser. The experiment’s plan and the results of it for the two-phase thermosiphon for both evaluated geometries with varying thermal and fluid flow parameters are presented. Experiments were performed for the most perspective working fluids, namely: water, R134a, SES36, ethanol and HFE7100. Obtained research proves the possibility to use TPCT for heat recovery from the industrial waste water.
Go to article

Abstract

The shell and coil heat exchangers are commonly used in heating, ventilation, nuclear industry, process plant, heat recovery and air conditioning systems. This type of recuperators benefits from simple construction, the low value of pressure drops and high heat transfer. In helical coil, centrifugal force is acting on the moving fluid due to the curvature of the tube results in the development. It has been long recognized that the heat transfer in the helical tube is much better than in the straight ones because of the occurrence of secondary flow in planes normal to the main flow nside the helical structure. Helical tubes show good performance in heat transfer enhancement, while the uniform curvature of spiral structure is inconvenient in pipe installation in heat exchangers. Authors have presented their own construction of shell and tube heat exchanger with intensified heat transfer. The purpose of this article is to assess the influence of the surface modification over the performance coefficient and effectiveness. The experiments have been performed for the steady-state heat transfer. Experimental data points were gathered for both laminar and turbulent flow, both for co current- and countercurrent flow arrangement. To find optimal heat transfer intensification on the shell-side authors applied the number of transfer units analysis.
Go to article

Abstract

The article presents detailed two-phase adiabatic pressure drops data for refrigerant R134a. Study cases have been set for a mass flux varying from 200 to 400 kg/m2s, at the saturation temperature of 19.4°C. Obtained experimental data was compared with the available correlations from the literature for the frictional pressure drop during adiabatic flow. Influence of mixture preparation on pressure drop was investigated, for varying inlet subcooling temperature in the heated section. The flow patterns have also been obtained by means of a high-speed camera placed in the visualization section and compared with literature observations.
Go to article

Abstract

The paper presents an experimental investigation of a silicone based heat exchanger, with passive heat transfer intensification by means of surface enhancement. The main objective of this paper was to experimentally investigate the performance of a heat exchanger module with the enhanced surface. Heat transfer in the test section has been examined and described with precise measurements of thermal and flow conditions. Reported tests were conducted under steady-state conditions for single-phase liquid cooling. Proposed surface modification increases heat flux by over 60%. Gathered data presented, along with analytical solutions and numerical simulation allow the rational design of heat transfer devices.
Go to article

Abstract

In the paper a method developed earlier by authors is applied to calculations of pressure drop and heat transfer coefficient for flow boiling and also flow condensation for some recent data collected from literature for such fluids as R404a, R600a, R290, R32,R134a, R1234yf and other. The modification of interface shear stresses between flow boiling and flow condensation in annular flow structure are considered through incorporation of the so called blowing parameter. The shear stress between vapor phase and liquid phase is generally a function of nonisothermal effects. The mechanism of modification of shear stresses at the vapor-liquid interface has been presented in detail. In case of annular flow it contributes to thickening and thinning of the liquid film, which corresponds to condensation and boiling respectively. There is also a different influence of heat flux on the modification of shear stress in the bubbly flow structure, where it affects bubble nucleation. In that case the effect of applied heat flux is considered. As a result a modified form of the two-phase flow multiplier is obtained, in which the nonadiabatic effect is clearly pronounced.
Go to article

This page uses 'cookies'. Learn more