Search results


  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 1
items per page: 25 50 75
Sort by:


The objective of this work was to generate a series of equations to describe the voltinism of Lobesia botrana in the quarantine area of the main winemaking area of Argentina, Mendoza. To do this we considered an average climate scenario and extrapolated these equations to other winegrowing areas at risk of being invaded. A grid of 4 km2 was used to generate statistics on L. botrana captures and the mean temperature accumulation for the pixel. Four sets of logistic regression were constructed using the percentage of accumulated trap catches/grid/week and the degree-day accumulation above 7°C, from 1st July. By means of a habitat model, an extrapolation of the phenological model generated to other Argentine winemaking areas was evaluated. According to our results, it can be expected that 50% of male adult emergence for the first flight occurs at 248.79 ± 4 degree-days (DD), in the second flight at 860.18 ± 4.1 DD, while in the third and the fourth flights, 1671.34 ± 5.8 DD and 2335.64 ± 4.3 DD, respectively. Subsequent climatic comparison determined that climatic conditions of uncolonized areas of Cuyo Region have a similar suitability index to the quarantine area used to adjust the phenological model. The upper valley of Río Negro and Neuquén are environmentally similar. Valleys of the northwestern region of Argentina showed lower average suitability index and greater variability among SI estimated by the algorithm considered. The combination of two models for the estimation of adult emergence time and potential distribution, can provide greater certainties in decision-making and risk assessment of invasive species.
Go to article

This page uses 'cookies'. Learn more