Search results

Filters

  • Journals
  • Date

Search results

Number of results: 3
items per page: 25 50 75
Sort by:

Abstract

The paper presents current reports on kinetics and mechanisms of reactions with mercury which take place in the exhaust gases, discharged from the processes of combustion of solid fuels (coals). The three main stages were considered. The first one, when thermal decomposition of Hg components takes place together with formation of elemental mercury (Hg0). The second one with homogeneous oxidation of Hg0 to Hg2+ by other active components of exhaust gases (e.g. HCl). The third one with heterogeneous reactions of gaseous mercury (the both - elemental and oxidised Hg) and solid particles of fl y ash, leading to generation of particulate-bound mercury (Hgp). Influence of exhaust components and their concentrations, temperature and retention time on the efficiency of mercury oxidation was determined. The issues concerning physical (gas-solid) and chemical speciation of mercury (fractionation Hg0-Hg2+) as well as factors which have influence on the mercury speciation in exhaust gases are discussed in detail.
Go to article

Abstract

To reduce the influence of the static unbalance on an infrared missile guidance system, a new static unbalance measure system for the gimbals axes has been developed. Considering the coupling effects caused by a mass eccentricity, the static balance condition and measure sequence for each gimbal axis are obtained. A novel static unbalance test approach is proposed after analyzing the dynamic model of the measured gimbal axis. This approach is to drive the measured gimbal axis to do sinusoidal reciprocating motion in a small angle and collect its drive currents in real time. Then the static unbalance of the measured gimbal axis can be obtained by the current multi-cycle integration. Also a measuring system using the proposed approach has been developed. A balanced simulator is used to verify the proposed approach by the load and repeatability tests. The results show the proposed approach enhances the efficiency of the static unbalance measurement, and the developed measuring system is able to achieve a high precision with a greater stability.
Go to article

This page uses 'cookies'. Learn more