Search results

Filters

  • Journals
  • Date

Search results

Number of results: 365
items per page: 25 50 75
Sort by:

Abstract

This study, describing computer simulation of a glider crash against a non-deformable ground barrier, is a part of a larger glider crash modeling project. The studies were intended to develop a numerical model of the pilot - glider - environment system, whereby the dynamics of the human body and the composite cockpit structure during a crash would make it possible to analyze flight accidents with focus on the pilot's safety. Notwithstanding that accidents involving glider crash against a rigid barrier (a wall, for example) are not common, establishing a simulation model for such event may prove quite useful considering subsequent research projects. First, it is much easier to observe the process of composite cockpit structure destruction if the crash is against a rigid barrier. Furthermore, the use of a non-deformable barrier allows one to avoid the errors that are associated with the modeling of a deformable substrate, which in most cases is quite problematic. Crash test simulation, carried out using a MAYMO package, involved a glider crash against a wall positioned perpendicularly to the object moving at a speed of 77 km/h. Computations allowed for determination of time intervals of the signals that are required to assess the behavior of the cockpit and pilot's body - accelerations and displacements in selected points of the glider's structure and loads applied to the pilot's body: head and chest accelerations, forces at femur, lumbar spine and safety belts. Computational results were compared with the results of a previous experimental test that had been designed to verify the numerical model. The glider's cockpit was completely destroyed in the crash and the loads transferred to the pilot's body were very substantial - way over the permitted levels. Since modeling results are fairly consistent with the experimental test, the numerical model can be used for simulation of plane crashes in the future.
Go to article

Abstract

By the use of different distribution methods of dynamical characteristics in the form of slowness function, mechatronic discrete systems have been synthesized. Each model consists of mechanical discrete part and a piezostack actuator connected to LxRxCx external network that has to comply with dynamical requirements in the form of poles and zeros. External network can work within different configurations. In this paper, one investigates the influence of negative parameters of stiffness in mechanical replacement models and capacitance in final mechatronic structures, after dimensionless transformations and retransformations.
Go to article

Abstract

This paper presents a numerical investigation of fracture criterion influence on perforation of high-strength 30PM steel plates subjected to 7.6251 mm Armour Piercing (AP) projectile. An evaluation of four ductile fracture models is performed to identify the most suitable fracture criterion. Included in the paper is the Modified Johnson-Cook (MJC) constitutive model coupled separately with one of these fracture criteria: the MJC fracture model, the Cockcroft-Latham (CL), the maximum shear stress and the constant failure strain models. A 3D explicit Lagrangian algorithm that includes both elements and particles, is used in this study to automatically convert distorted elements into meshless particles during the course of the computation. Numerical simulations are examined by comparing with the experimental results. The MJC fracture model formulated in the space of the stress triaxiality and the equivalent plastic strain to fracture were found capable of predicting the realistic fracture patterns and at the same time the correct projectile residual velocities. However, this study has shown that CL one parameter fracture criterion where only one simple material test is required for calibration is found to give good results as the MJC failure criterion. The maximum shear stress fracture criterion fails to capture the shear plugging failure and material fracture properties cannot be fully characterized with the constant fracture strain.
Go to article

Abstract

A formulation developed at the Laboratory of Mechanical Engineering allows robust and efficient simulation of large and complex multibody systems. Simulators of cars, excavators and other systems have been developed showing that real-time simulations are possible even when facing demanding manoeuvres. Hydraulic actuators are presented in many industrial applications of multibody systems, like in the case of the heavy machinery field. When simulating the dynamics of this kind of problems that combine multibody dynamics and hydraulics, two different approaches are common: to resort to kinematically guide the variable length of the actuator, thus avoiding the need to consider the dynamics of the hydraulic system; or to perform a multi-rate integration of both subsystems if a more detailed description of the problem is required, for example, when the objective of the study is to optimize the pump control. This work addresses the inclusion of hydraulic actuators dynamics in the above-mentioned self-developed multibody formulation, thus leading to a unified approach. An academic example serves to compare the efficiency, accuracy and ease of implementation of the simplified (kinematic guidance), multi-rate and unified approaches. Such a comparison is the main contribution of the paper, as it may serve to provide guidelines on which approach to select depending on the problem characteristics.
Go to article

Abstract

This paper presents the results of Pilot Assisting Module research performed on two light aircraft flight simulators developed in parallel at Brno University of Technology, Czech Republic, and Rzeszow University of Technology, Poland. The first simulator was designed as an open platform for the verification and validation of the advanced pilot/aircraft interface systems and inherited its appearance from the cockpit section of the Evektor SportStar. The second flight simulator, the XM-15, has been built around the cockpit of a unique agriculture jet Belfegor. It introduced a system architecture that supports scientific simulations of various aircraft types and configurations, making it suitable for conceptual testing of Pilot Assisting Module. The XM-15 was initially designed to support research on advanced flight control systems, but due to its continuing modernization it evolved into a hardware-in-the-loop test-bed for electromechanical actuators and autopilot CAN based controller blocks. Pilot-in-the-loop experiments of proposed Pilot Assisting Module revealed favorable operational scenarios, under which the proposed system reduces the cockpit workload during single pilot operations.
Go to article

Abstract

Commonly used computations of basic rating life of a bearing system are based on the ISO 281:1990 standard. These computations include dynamic load capacity of a given bearing, its effective load and average rotational speed, whereas they omit distribution of external load acting upon particular rolling parts depending, among other things, on: - displacement in bearing (displacements in three directions and declination in two planes), - slackness in bearings. The aim of the presented theoretical research is to solve a problem of fatigue life of a ball bearing taking into consideration displacement in bearing resulting from elasticity of a three-bearing shaft, elasticity of bearings and their internal slackness.
Go to article

Abstract

The two-variable refined plate theory is used in this paper for the analysis of thick plates resting on elastic foundation. This theory contains only two unknown parameters and predicts parabolic variation of transverse shear stresses. It satisfies the zero traction on the plate surfaces without using shear correction factor. Using the principle of minimum potential energy, the governing equations for simply supported rectangular plates resting on Winkler elastic foundation are obtained. The Navier method is adopted for solution of obtained coupled governing equations, and several benchmark problems under various loading conditions are solved by present theory. The comparison of obtained results with other common theories shows the excellent efficiency of this theory in modeling thick plates resting on elastic foundation. Also, the effect of foundation modulus, plate thickness and type of loading are studied and the results show that the deflections are decreased by increasing the foundation modulus and plate thickness.
Go to article

Abstract

Nominal strength reduction in cross ply laminates of [0/90]2s is observed in tensile tests of glass fiber composite laminates having central open hole of diameters varying from 2 to 10 mm. This is well known as the size effect. The extended finite element method (XFEM) is implemented to simulate the fracture process and size effect (scale effect) in the glass fiber reinforced polymer laminates weakened by holes or notches. The analysis shows that XFEM results are in good agreement with the experimental results specifying nominal strength and in good agreement with the analytical results based on the cohesive zone model specifying crack opening displacement and the fracture process zone length.
Go to article

Abstract

In this paper we propose an original configuration of a compliant mini-gripper for handling chemicals. The compliant mini-gripper is 3D modeled and analyzed with finite element method. To use it in a wider range of containers designed for laboratories we made several variants of fasteners. In order to obtain a functional prototype in a scale appropriate to characterize the system, we determined the material properties of the gripper and developed an experimental stand for characterizing the system with mini-gripper. Finally, we compared the movements of the experimental grip, made according to the movement of the bellows type actuator, determined based on, analytical and numerical results.
Go to article

Abstract

This numerical research is devoted to introducing the concept of helical cone coils and comparing the performance of helical cone coils as heat exchangers to the ordinary helical coils. Helical and spiral coils are known to have better heat and mass transfer than straight tubes, which is attributed to the generation of a vortex at the helical coil. This vortex, known as the Dean Vortex, is a secondary flow superimposed on the primary flow. The Dean number, which is a dimensionless number used in describing the Dean Vortex, is a function of Reynolds Number and the square root of the curvature ratio, so varying the curvature ratio for the same coil would vary the Dean Number. Numerical investigation based on the commercial CFD software fluent is used to study the effect of changing the structural parameters (taper angle of the helical coil, pitch and the base radius of curvature changes while the height is kept constant) on the Nusselt Number, heat transfer coefficient and coil outlet temperature. Six main coils having pipe diameters of 10 and 12.5 mm and base radius of curvature of 70, 80 and 90 mm were used in the investigation. It was found that, as the taper angle increases, both Nusselt Number and the heat transfer coefficient increase, also the pitch at the various taper angles was found to have an influence on Nusselt Number and the heat transfer coefficient. A MATLAB code was built to calculate the Nusselt Number at each coil turn, then to calculate the average Nusselt number for all of the coil turns. The MATLAB code was based on empirical correlation of Manlapaz and Churchill for ordinary helical coils. The CFD simulation results were found acceptable when compared with the MATLAB results.
Go to article

Abstract

Purpose: The influence of age-hardening solution treatment at temperature 515 degrees centigrade with holding time 4 hours, water quenching at 40 degrees centigrade and artificial aging by different temperature 130, 150, 170 and 210 degrees centigrade with different holding time 2, 4, 8, 16 and 32 hours on changes in morphology of Fe-rich Al15(FeMn)3Si2and Cu-rich (Al2Cu, Al-Al2Cu-Si) intermetallic phases in recycled AlSi9Cu3 cast alloy. Material/Methods: Recycled (secondary) AlSi9Cu3 cast alloy is used especially in automotive industry (dynamic exposed cast, engine parts, cylinder heads, pistons and so on). Microstructure was observed using a combination of different analytical techniques (scanning electron microscopy upon standard and deep etching and energy dispersive X-ray analysis – EDX) which have been used for the identification of the various phases. Quantitative study of changes in morphology of phases was carried out using Image Analyzer software NIS-Elements. The mechanical properties (Brinell hardness and tensile strength) were measured in line with STN EN ISO. Results/Conclusion: Age-hardening led to changes in microstructure include the spheroidization of eutectic silicon, gradual disintegration, shortening and thinning of Fe-rich intermetallic phases and Al-Al2Cu-Si phases were fragmented, dissolved and redistributed within alpha-matrix. These changes led to increase in the hardness and tensile strength in the alloy.
Go to article

Abstract

The aim of this paper is to analyze various CO2 compression processes for post-combustion CO2 capture applications for 900 MW pulverized coal-fired power plant. Different thermodynamically feasible CO2 compression systems will be identified and their energy consumption quantified. A detailed thermodynamic analysis examines methods used to minimize the power penalty to the producer through integrated, low-power compression concepts. The goal of the present research is to reduce this penalty through an analysis of different compression concepts, and a possibility of capturing the heat of compression and converting it to useful energy for use elsewhere in the plant.
Go to article

Abstract

In this paper, the authors investigate a cylindrical shell reinforced by carbon nanotubes. The critical buckling load is calculated using analytical method when it is subjected to compressive axial load. The Mori-Tanaka method is firstly utilized to estimate the effective elastic modulus of composites having aligned oriented straight CNTs. The eigenvalues of the problem are obtained by means of an analytical approach based on the optimized Rayleigh-Ritz method. There is presented a study on the effects of CNTs volume fraction, thickness and aspect ratio of the shell, CNTs orientation angle, and the type of supports on the buckling load of cylindrical shells. Furthermore the effect of CNTs agglomeration is investigated when CNTs are dispersed none uniformly in the polymer matrix. It is shown that when the CNTs are arranged in 90 degrees direction, the highest critical buckling load appears. Also, the results are plotted for different longitudinal and circumferential mode numbers. There is a specific value for aspect ratio of the cylinder that minimizes the buckling load. The results reveal that for very low CNTs volume fractions, the volume fraction of inclusions has no important effect on the critical buckling load.
Go to article

Abstract

The paper presents a numerical study on the heat transfer and pressure drop, related to flow in pipes with helical micro-fins. For all tested geometries, one applied a constant wall heat flux and fully developed 3D turbulent flow conditions. The influence of the angle of micro fins (referred to the tube axis) on thermal-flow characteristics were tested. The value of this angle was varied – with a step of 10 degrees – from 0 to 90 degrees (representing grooves parallel and perpendicular to the axis, respectively). Before numerical investigation, the pipe with helical angle of 30 degree was tested on an experimental stand. The results obtained from experiment and numerical simulations were compared and presented on the charts. As an effect of the numerical simulations, the friction factor f and Nusselt number characteristics was determined for the range of Re=104/1.6x106. The analysis of the results showed high, irregular influence of the helical angle on thermal characteristics and pressure drops. Additionally, the ratios: f/fplain, Nu/Nuplainand efficiency indexes (Nu/Nuplain)/( f/fplain) as a function of the Reynolds number for every helical angle were shown on the charts.
Go to article

Abstract

In the paper, the author presents experimental analysis of propagation of plastic zones in two-dimensional models with different stress concentrators. The experimental tests were carried out by photoelastic coating method on duralumin stripes loaded by tensile stresses. For various levels of loading, the photographs of isochromatic pattern were taken under loading and after removing loading. On the basis of isochromatic pattern recorded for loaded models, the boundaries of plastic zones were determined using the Treska-Coulomb yield condition. The isochromatic pattern taken for the unloaded, but previously partly plastified elements, show the picture of the residual strain remaining in the material. A discussion of the results is presented.
Go to article

Abstract

In this paper we present a mixed shooting – harmonic balance method for large linear mechanical systems on which local nonlinearities are imposed. The standard harmonic balance method (HBM), which approximates the periodic solution in frequency domain, is very popular as it is well suited for large systems with many degrees of freedom. However, it suffers from the fact that local nonlinearities cannot be evaluated directly in the frequency domain. The standard HBM performs an inverse Fourier transform, then calculates the nonlinear force in time domain and subsequently the Fourier coefficients of the nonlinear force. The disadvantage of the HBM is that strong nonlinearities are poorly represented by a truncated Fourier series. In contrast, the shooting method operates in time-domain and relies on numerical time-simulation. Set-valued force laws such as dry friction or other strong nonlinearities can be dealt with if an appropriate numerical integrator is available. The shooting method, however, becomes infeasible if the system has many states. The proposed mixed shooting-HBM approach combines the best of both worlds.
Go to article

Abstract

Thrust bearing model is developed for fluid flow calculation and for determination of bearing integral characteristics in the presence of sliding surfaces closure and shaft angular displacements. The model is based on the coupled solution of the problem of incompressible fluid flow between the sliding surfaces and the problem of bearing and shaft elements deformation under the action of the fluid film pressure. Verification of the bearing model results is carried out by the comparison versus the fluid flow calculation results obtained by STAR-CD software and the experimental and theoretical results represented in the certain literature. Thrust bearing characteristics are determined versus sliding surfaces closure and rotating disk (runner) angular displacements. The contribution of the sliding surfaces deformations into bearing integral characteristics is estimated.
Go to article

Abstract

The paper presents the idea of a system for controlling the movement of a flowmeter for air velocity profile measurement. In such a system, due to massive amount of data and limitations of the Data Acquisition Equipment, it is necessary to use moveable sensors. The flowmeter sensor is moved with the use of a linear module with a stepper motor and a tooth-belt drive. The location and speed of the sensor are controlled by a program based on the idea of virtual instrument. The proposed structure allows the user to control operation of the stand and provides automatic measurement. A wide range of velocity and step increments of the stepper motor drive, and flexibility of the virtual instrument software, allow one to create effective measurement systems ensuring sufficiently precise location with optimal time duration of measurement. It is shown that the linear module with tooth-belt is an effective alternative for similar modules with micro-screw drives.
Go to article

Abstract

Vehicle parameters have a significant impact on handling, stability, and rollover propensity. This study demonstrates two methods that estimate the inertia values of a ground vehicle in real-time. Through the use of the Generalized Polynomial Chaos (gPC) technique for propagating the uncertainties, the uncertain vehicle model outputs a probability density function for each of the variables. These probability density functions (PDFs) can be used to estimate the values of the parameters through several statistical methods. The method used here is the Maximum A-Posteriori (MAP) estimate. The MAP estimate maximizes the distribution of P(β|z) where β is the vector of the PDFs of the parameters and z is the measurable sensor comparison. An alternative method is the application of an adaptive filtering method. The Kalman Filter is an example of an adaptive filter. This method, when blended with the gPC theory is capable at each time step of updating the PDFs of the parameter distributions. These PDF’s have their median values shifted by the filter to approximate the actual values.
Go to article

Abstract

The article presents the issue of calibration and verification of an original module, which is a part of the robotic turbojet engines elements processing station. The task of the module is to measure turbojet engine compressor blades geometric parameters. These type of devices are used in the automotive and the machine industry, but here we present their application in the aviation industry. The article presents the idea of the module, operation algorithm and communication structure with elements of a robot station. The module uses Keyence GT2-A32 contact sensors. The presented information has an application nature. Functioning of the module and the developed algorithm has been tested, the obtained results are satisfactory and ensure sufficient process accuracy. Other station elements include a robot with force control, elements connected to grinding such as electrospindles, and security systems.
Go to article

Abstract

Despite the ever-increasing computational power of modern processors, the reduction of complex multibody dynamic models remains an important topic of investigation, particularly for design optimization, sensitivity analysis, parameter identification, and controller tuning tasks, which can require hundreds or thousands of simulations. In this work, we first develop a high-fidelity model of a production sports utility vehicle in Adams/Car. Single-link equivalent kinematic quarter-car (SLEKQ, pronounced “sleek”) models for the front and rear suspensions are then developed in MapleSim. To avoid the computational complexity associated with introducing bushings or kinematic loops, all suspension linkages are lumped into a single unsprung mass at each corner of the vehicle. The SLEKQ models are designed to replicate the kinematic behaviour of a full suspension model using lookup tables or polynomial functions, which are obtained from the high-fidelity Adams model in this work. The predictive capability of each SLEKQ model relies on the use of appropriate parameters for the nonlinear spring and damper, which include the stiffness and damping contributions of the bushings, and the unsprung mass. Homotopy optimization is used to identify the parameters that minimize the difference between the responses of the Adams and MapleSim models. Finally, the SLEKQ models are assembled to construct a reduced 10-degree-of-freedom model of the full vehicle, the dynamic performance of which is validated against that of the high-fidelity Adams model using four-post heave and pitch tests.
Go to article

Abstract

At the current stage of diagnostics and therapy, it is necessary to perform a geometric evaluation of facial skull bone structures basing upon virtually reconstructed objects or replicated objects with reverse engineering. The objective hereof is an analysis of imaging precision for cranial bone structures basing upon spiral tomography and in relation to the reference model with the use of laser scanning. Evaluated was the precision of skull reconstruction in 3D printing, and it was compared with the real object, topography model and reference model. The performed investigations allowed identifying the CT imaging accuracy for cranial bone structures the development of and 3D models as well as replicating its shape in printed models. The execution of the project permits one to determine the uncertainty of components in the following procedures: CT imaging, development of numerical models and 3D printing of objects, which allows one to determine the complex uncertainty in medical applications.
Go to article

Abstract

Active suspension systems ease the conflict between comfort and handling. This requires the use of suitable actuators that in turn need to be efficiently controlled. This paper proposes a model-based control approach for a nonlinear suspension actuator. Firstly the concept is derived in the linear framework in order to simplify the synthesis and analysis phase. There a linear model of the actuator is proposed and discussed. Further, this design phase includes a comparison between model-free PID controllers and a newly proposed two-degree-of-freedom controller which allows one to shape reference and disturbance responses separately. Subsequently, the two-degree-of-freedom controller, which proves to be superior, is adapted to the nonlinear framework by considering a linear parameter varying representation of the nonlinear plant. Finally, the nonlinear controller is implemented in a test car confirming the concept applicability to real hardware.
Go to article

This page uses 'cookies'. Learn more