Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 27
items per page: 25 50 75
Sort by:

Abstract

This paper presents the construction of adequate 3-D computer models for simulation research and analysis of dynamic aspects of caliper disc brakes, as well as of drum brakes, actuated by a short stroke electromagnet or a hydraulic thruster, when these brake types are used in the hoisting mechanism of cranes. The adequacy of the 3-D models has been confirmed by comparing their simulation results with results from an experiment and from classic computational models. The classic computational models, related to the study of main dynamic features of friction brakes, are layouts that are based on a number of assumptions, such as that the braking force instantly reaches its steady-state value, the clearance between the friction lining and the disc/drum is neglected, etc. These assumptions lead to a limitation of research options. The proposed 3-D computer models improve the research layouts by eliminating a number of the classic model assumptions. The improvements are related to the determination of the braking time, braking torque, normal force and other dynamic aspects of the brakes by performing simulations that take into account: the braking force as a function of time, the presence of clearance between the friction lining and the disc/drum, etc.
Go to article

Abstract

A hybrid artificial boundary condition (HABC) that combines the volume-based acoustic damping layer (ADL) and the local face-based characteristic boundary condition (CBC) is presented to enhance the absorption of acoustic waves near the computational boundaries. This method is applied to the prediction of aerodynamic noise from a circular cylinder immersed in uniform compressible viscous flow. Different ADLs are designed to assess their effectiveness whereby the effect of the mesh-stretch direction on wave absorption in the ADL is analysed. Large eddy simulation (LES) and FW-H acoustic analogy method are implemented to predict the far-field noise, and the sensitivities of each approach to the HABC are compared. In the LES computed propagation field of the fluctuation pressure and the frequency-domain results, the spurious reflections at edges are found to be significantly eliminated by the HABC through the effective dissipation of incident waves along the wave-front direction in the ADL. Thereby, the LES results are found to be in a good agreement with the acoustic pressure predicted using FW-H method, which is observed to be just affected slightly by reflected waves.
Go to article

This page uses 'cookies'. Learn more