Search results

Filters

  • Journals
  • Date

Search results

Number of results: 6
items per page: 25 50 75
Sort by:

Abstract

The influence of a shape of graphite precipitates in cast iron on the thermal shock resistance of the alloy was initially determined. Investigations included the nodular cast iron and the vermicular one, as well as the cast iron containing flake graphite. The thermal shock resistance was examined at a special laboratory stand which allowed for multiple heating and cooling of specimens within the presumed temperature range. The specimens were inductively heated and then cooled in water of constant temperature of about 30°C. There were used flat specimens 70 mm long, 5 mm thick in the middle part, and tapering like a wedge over a distance of 15 mm towards both ends. The total length of cracks generated on the test surfaces of the wedge-shaped parts of specimens was measured as a characteristic value inversely proportional to the thermal shock resistance of a material. The specimens heated up to 500°C were subjected to 2000 test cycles of alternate heating and cooling, while the specimens heated up to 600°C underwent 1000 such cycles. It was found that as the heating temperature rose within the 500-600°C range, the thermal shock resistance decreased for all examined types of cast iron. The research study proved that the nodular cast iron exhibited the best thermal shock resistance, the vermicular cast iron got somewhat lower results, while the lowest thermal shock resistance was exhibited by grey cast iron containing flake graphite.
Go to article

Abstract

In this paper the effect of soldering technique and thermal shock test were investigated on SAC 305 solder joints, produced by two different solder method. The solder joints were subjected to different cycle numbers up to 5000 thermal shock tests with two different thermal profiles of –30/+110°C and –40/+125°C. Microstructural properties of the tested joints were examined with the focus on intermetallic layer thickness and crack formation/propagation. Thickness of the scallop shaped Cu6Sn5 intermetallic layer was increased with increasing cycle number for both THRS and multiwave joints, but the thickening was more effective for the THRS joints. Cracks typically formed at the solder alloy/ PTH barrel and the solder alloy/pin interfaces and propagated along grain boundaries and precipitations of intermetallic compound.
Go to article

Abstract

Thermal self-action of an acoustic beam with one discontinuity or several shock fronts is studied in a Newtonian fluid. The stationary self-action of a single sawtooth wave with discontinuity (or some integer number of these waves), symmetric or asymmetric, is considered in the cases of self-focusing and self- defocusing media. The results are compared with the non-stationary thermal self-action of the periodic sound. Thermal self-action of a single shock wave which propagates with the various speeds is considered.
Go to article

Abstract

The paper presents a detailed analysis of the material damaging process due to lowcycle fatigue and subsequent crack growth under thermal shocks and high pressure. Finite Element Method (FEM) model of a high pressure (HP) by-pass valve body and a steam turbine rotor shaft (used in a coal power plant) is presented. The main damaging factor in both cases is fatigue due to cycles of rapid temperature changes. The crack initiation, occurring at a relatively low number of load cycles, depends on alternating or alternating-incremental changes in plastic strains. The crack propagation is determined by the classic fracture mechanics, based on finite element models and the most dangerous case of brittle fracture. This example shows the adaptation of the structure to work in the ultimate conditions of high pressure, thermal shocks and cracking.
Go to article

Abstract

Constantly developing production process and high requirements concerning the quality of glass determine the need for continuous improvement of tools and equipment needed for its production. Such tools like forms, most often made of cast-iron, are characterized by thick wall thickness compared to their overall dimensions and work in difficult conditions such as heating of the surface layer, increase of thermal stresses resulting from the temperature gradient on the wall thickness, occurrence of thermal shock effect, resulting from cyclically changing temperatures during filling and emptying of the mould. There is no best and universal method for assessing how samples subjected to cyclic temperature changes behave. Research on thermal fatigue is a difficult issue, mainly due to the instability of this parameter, which depends on many factors, such as the temperature gradient in which the element works, the type of treatment and the chemical composition of the material. Important parameters for these materials are at high temperature resistance to thermal shock and thermal fatigue what will be presented in this paper.
Go to article

Abstract

In this article, the fracture behavior of functionally graded thick-walled cylinder under thermo-mechanical shock is investigated. For this purpose, classical coupled thermoelastic equations are used in calculations. First, these equations are discretized with extended finite element method (XFEM) in the space domain and then they are solved by the Newmark method in the time domain. The most general form of interaction integral is extracted for axially symmetric circumferential crack in a cylinder under thermal and mechanical loads in functionally graded materials and is used to calculate dynamic stress intensity factors (SIFs). The problem solution has been implemented in MATLAB software.
Go to article

This page uses 'cookies'. Learn more