Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 3
items per page: 25 50 75
Sort by:

Abstract

Metal contents in the tundra soils (Gelic Regosols, Gelic Gleysols, Gelic Cambisols) of the maritime lowland of Kaffiöyra, in the western Spitsbergen seashore are presented in this publication. The average heave metal contents in samples collected from the depth layer 0—130 cm are follows: Fe 2.9%, Mn 392 ppm, Zn 75 ppm, Cu 23.4 ppm, Ni 24.1 ppm, Co 7.4 ppm, Pb 12.5 ppm, Cd 0.24 ppm. The surface soil layer 0 to 25 cm is poorer in Ca and Mg than the underlying layer 25 to 130 cm. The heave metal contents like Fe, Mn, Ni and Co, are also somewhat lower in the upper layer. The enrichment indices of Pb and Cd are equal in the surface soil layer 1.16 and 1.23 respectively. Correlation coefficients between each studied element and organic carbon, and, on the other hand, soil separates < 20 μm and < 2 μm are very low.
Go to article

Abstract

Distribution of the following elements: Na, K, Ca and Mg, and heavy metals: Fe, Mn, Zn, Cu, Ni, Co, Pb and Cd was analysed in the Gelic Cambisols profile from Kaffiöyra, Spitsbergen. The leaching of Ca, Fe, Mn, Co and Cu, and in a less degree Mg and Ni downward the profiles occurs in the studied soil due to pedogenic processes. The surface soil horizon is strongly enriched in Na and K of marine origin and Pb and Cd from anthropogenic pollution of the distant atmospheric transports.
Go to article

Abstract

The potential of five plants namely Atriplex halimus L., A. canescens (Pursh) Nutt., Suaeda fruticosa (Forssk. ex J.F. Gmel.), Marrubium vulgare L. and Dittrichia viscosa (L.) Greuter from two selected wetlands in northwest Algeria subjected to house and industrial effluents were examined to assess their arbuscular mycorrhizal fungal (AMF) diversity and colonization, as well as to determine their tolerance and ability in accumulating metallic trace elements (MTEs). The purpose was to investigate whether, or not, these fungi are related to metallic uptake. Arbuscular mycorrhizal association was observed in all plant species, since the dual association between AMF and dark septate endophytes (DSE) was found in roots of 80% plants species. Hence, the decreasing trend of metal accumulation in most plant organs was Zn>Cu>Pb, and the most effi cient species were M. vulgare> S. fruticosa> A. canescens> D. viscosa> A. halimus. The bioaccumulator factors exceeded the critical value (1.0) and the transport factors indicated that all these species were phytoremediators. Pearson correlation showed that Cd bioaccumulation and translocation were inhibited by AMF infection; meanwhile Zn, Pb and Cd accumulation were affected by AMF spore density and species richness, DSE frequency, pH, AMF and plant host. Native halophytes showed a multi-metallic resistance capacity in polluted wetlands. M. vulgare was the most efficient in metal accumulation and the best host for mycorrhizal fungi. AMF played a major role in metal accumulation and translocation.
Go to article

This page uses 'cookies'. Learn more