Search results

Filters

  • Journals
  • Date

Search results

Number of results: 10
items per page: 25 50 75
Sort by:

Abstract

In this study, the combined effect of Zr and Si on isothermal oxidation of Ti for 25 and 50 h at 820°C, which is the temperature related to exhaust valves operation, was investigated. Si addition into Ti-5mass%Zr alloy led to a distribution of silicide Ti5Si3 phase formed by a eutectic reaction. The Ti sample containing only Zr showed more retarded oxidation rate than Ti-6Al-4V, the most prevalent Ti alloy, at the same condition. However, while a simultaneous addition of Zr and Si resulted in greater increase of oxidation resistance. The oxide layer formed after the addition of Zr and Si comprised TiO2, ZrO2, and SiO2.
Go to article

Abstract

Isothermal hot compression experiments were carried out using the Gleeble-1500D thermal mechanical simulator. The flow stress of the Cu-1%Zr and Cu-1%Zr-0.15%Y alloys was studied at hot deformation temperature of 550°C, 650°C, 750°C, 850°C, 900°C and the strain rate of 0.001 s–1, 0.01 s–1, 0.1 s–1, 1 s–1, 10 s–1. Hot deformation activation energy and constitutive equations for two kinds of alloys with and without yttrium addition were obtained by correlating the flow stress, strain rate and deformation temperature. The reasons for the change of hot deformation activation energy of the two alloys were analyzed. Dynamic recrystallization microstructure evolution for the two kinds of alloys during hot compression deformation was analyzed by optical and transmission electron microscopy. Cu-1%Zr and Cu-1%Zr-0.15%Y alloys exhibit similar behavior of hot compression deformation. Typical dynamic recovery occurs during the 550-750°C deformation temperature, while dynamic recrystallization (DRX) occurs during the 850-900°C deformation temperature. High Zr content and the addition of Y significantly improved Cu-1%Zr alloy hot deformation activation energy. Compared with hot deformation activation energy of pure copper, hot deformation activation energy of the Cu-1%Zr and Cu-1%Zr-0.15%Y alloys is increased by 54% and 81%, respectively. Compared with hot deformation activation energy of the Cu-1%Zr alloy, it increased by 18% with the addition of Y. The addition of yttrium refines grain, advances the dynamic recrystallization critical strain point and improves dynamic recrystallization.
Go to article

Abstract

The results of activity studies of four catalysts in methanol synthesis have been presented. A standard industrial catalyst TMC-3/1 was compared with two methanol catalysts promoted by the addition of magnesium and one promoted by zirconium. The kinetic analysis of the experimental results shows that the Cu/Zn/Al/Mg/1 catalyst was the least active. Although TMC-3/1 and Cu/Zn/Al/Mg/2 catalysts were characterised by a higher activity, the most active catalyst system was Cu/Zn/Al/Zr. The activity calculated for zirconium doped catalyst under operating conditions was approximately 30% higher that of TMC-3/1catalyst. The experimental data were used to identify the rate equations of two types - one purely empirical power rate equation and the other one - the Vanden Bussche & Froment kinetic model of methanol synthesis. The Cu/ZnO/Al2O3 catalyst modified with zirconium has the highest application potential in methanol synthesis.
Go to article

Abstract

The paper presents the effect of ZrO2 layer deposition by the ALD process on the physicochemical properties of cobalt-based alloys (Realloy C and EOS CoCr SP2) intended for application in prosthetic dentistry. The paper shows the results of the surface roughness measurements made by the AFM method as well as the wettability and free surface energy measurements. Additionally,potentiodynamic tests of pitting corrosion resistance and electrochemical impedance spectroscopy in a solution of artificial saliva were carried out. Tests were carried out on the samples in the initial state and after surface modification with the ZrO2 layer. Based on these results, the usefulness (e.g. enhancement of corrosion resistance and biocompatibility) of the proposed ZrO2 layer on the cobalt alloys was assessed.
Go to article

Abstract

Metallic fuel slugs containing rare-earth (RE) elements have high reactivity with quartz (SiO2) molds, and a reaction layer with a considerable thickness is formed at the surface of metallic fuel slugs. The surface characterization of metallic fuel slugs is essential for safety while operating a fast reactor at elevated temperature. Hence, it is necessary to evaluate the surface characteristics of the fuel slugs so that chemical interaction between fuel slug and cladding can be minimized in the reactor. When the Si element causes a eutectic reaction with the cladding, it deteriorates the metallic fuel slugs. Thus, it is necessary to examine the characteristics of the surface reaction layer to prevent the reaction of the metallic fuel slugs. In this study, we investigated the metallurgical characteristics of the surface reaction layer of fabricated U-10wt.%Zr-Xwt.%RE (X = 0, 5, 10) fuel slugs using injection casting. The results showed that the thickness of the surface reaction layer increased as the RE content of the metallic fuel slugs increased. The surface reaction layer of the metallic fuel slug was mainly formed by RE, Zr and the Si, which diffused in the quartz mold.
Go to article

Abstract

The current study were performed in order to assess the fabrication possibility of the metal-ceramic composites based on nanocrystalline substrates. The influence of the variable time of the high energy ball-milling (10, 30 and 50 h) on the structure, pores morphology and microhardness of Ti/ZrO2 and Ti/Al2O3 compositions was studied. The X-ray diffraction analysis confirmed the composite formation for all milling times and sintering in the case of Ti/ZrO2 system. Decomposition of substrates during milling process of Ti/Al2O3 system was also observed. Additionally, the changes of lattice parameter as a function of milling time were studied. The morphology of powders and the microstructure of the sintered samples were observed by scanning electron microscopy (SEM). Also, analysis of microhardness and pores structure were performed.
Go to article

Abstract

U-10wt.%Zr metallic fuel slugs containing rare-earth (RE: a rare-earth alloy comprising 53% Nd, 25% Ce, 16% Pr and 6% La) elements for a sodium-cooled fast reactor were fabricated by modified injection casting as an alternative method. The distribution, size and composition of the RE inclusions in the metallic fuel slugs were investigated according to the content of the RE inclusions. There were no observed casting defects, such as shrunk pipes, micro-shrinkage or hot tears formed during solidification, in the metallic fuel slugs fabricated by modified injection casting. Scanning electron micrographs and energy-dispersive X-ray spectroscopy (SEM-EDS) showed that the Zr and RE inclusions were uniformly distributed in the matrix and the composition of the RE inclusions was similar to that of a charged RE element. The content and the size of the RE inclusions increased slightly according to the charge content of the RE elements. RE inclusions in U-Zr alloys will have a positive effect on fuel performance due to their micro-size and high degree of distribution.
Go to article

Abstract

The paper contains the results of the initial surface treatment influence on the properties of the medical Ti-6Al-7Nb alloy with a modified zirconium oxide layer deposited on its surface by sol-gel method. In the paper, the analysis of results of potentiodynamic studies is presented as well as its resistance to pitting corrosion and electrochemical impedance spectroscopy (EIS), macroscopic observation of the surface of samples and analysis of geometrical structure with the use Atomic Force Microscope (AFM) were performed. The studies were performed on two groups of samples depending on the graduation of the sand used in sandblasted process – 50 μm and 250 μm. Based on the obtained results it can be concluded that the type of the initial surface treatment preceding the surface modification of the Ti-6Al-7Nb has a significant effect on its properties.
Go to article

Abstract

In this study, the modification mechanism and growth process of Al3(Sc, Zr) particles in as-cast Al-Si-Mg-Cu based alloy with addition of Sc and Zr were systematically investigated. It was found that 0.57 wt-%Sc addition caused a significant refinement in the average grain size of the investigated alloy, which brought about a remarkable transformation in as-cast microstructure, from thick dendritic shape to fine equiaxed structure. A large amount of primary Al3(Sc, Zr) particles with the dimension of around 5-6 μm were also observed within the equiaxed grain. Due to the identical orientation and similar crystal structure between primary Al3(Sc, Zr) particles and α-Al matrix, the primary particles always served as heterogeneous nucleus for the α-Al matrix. In addition, these cusped cubic primary Al3(Sc, Zr) particles showed triangle, star, rhomboid morphologies are generated from sectioning the particle in (111), (100) and (110) planes, respectively. Particularly, the typical eutectic structure which contained odd number-layer (Al3(Sc, Zr)+α-Al+  +Al3(Sc, Zr)) was observed within the investigated particles.
Go to article

This page uses 'cookies'. Learn more