Search results

Filters

  • Journals
  • Date

Search results

Number of results: 3
items per page: 25 50 75
Sort by:

Abstract

The study focused on environmental evaluation of the disposed wooden railway sleeper gasification system used for electrical energy production. The aforementioned base technology was referred to the system producing electricity from disposed wooden railway sleepers through combustion. The evaluation was carried out using the LCA technique. The results show that in scope of impact on human health and ecosystems, the technology based on sleeper gasification is friendlier to the environment than the alternative technology. The technology of reference produces a lower environmental burden in scope of depletion of non-renewable natural resources. In comparison of the base technology (gasification) and the alternative technology (combustion), the end environmental effect shows that in scope of the analysis the base technology, i.e. the technology involving gasification of disposed railway sleepers, is more friendly to the environment.
Go to article

Abstract

The objective of the paper is to use life cycle assessment to compare environmental impact of different technologies used in the process of water disinfection. Two scenarios are developed for water disinfection life cycle at ZUW Raba water treatment plant: (1) historical, in which gaseous chlorine is used as a disinfectant and (2) actual, in which UV radiation and electrolytically generated sodium hypochlorite are used for that purpose. Primary data is supplemented with ecoinvent 3 database records. Environmental impact is assessed by IMPACT2002+ method and its midpoint and endpoint indicators that are calculated with the use of SimaPro 8.4 software. The focus of the assessment is on selected life cycle phases: disinfection process itself and the water distribution process that follows. The assessment uses the data on flows and emissions streams as observed in the Raba plant. As the results of primal analysis show, a change of disinfectant results in quantitative changes in THMs and free chlorine in water supplied to the water supply network. The results of analysis confirm the higher potential of THMs formation and higher environmental impact of the combined method of UV/NaClO disinfection in distribution phase and in whole life cycle, mainly due to the increase of human toxicity factors. However, during the disinfection phase, gaseous chlorine use is more harmful for environment. But the final conclusion states that water quality indicators are not significant in the context of LCA, while both disinfection and distribution phases are concerned.
Go to article

Abstract

This paper presents the Life Cycle Assessment (LCA) analysis concerning the selected options of supercritical coal power units. The investigation covers a pulverized power unit without a CCS (Carbon Capture and Storage) installation, a pulverized unit with a "post-combustion" installation (MEA type) and a pulverized power unit working in the "oxy-combustion" mode. For each variant the net electric power amounts to 600 MW. The energy component of the LCA analysis has been determined. It describes the depletion of non-renewable natural resources. The energy component is determined by the coefficient of cumulative energy consumption in the life cycle. For the calculation of the ecological component of the LCA analysis the cumulative CO2 emission has been applied. At present it is the basic emission factor for the LCA analysis of power plants. The work also presents the sensitivity analysis of calculated energy and ecological factors.
Go to article

This page uses 'cookies'. Learn more