## Search results

### Search results

Number of results: 9
items per page: 25 50 75
Sort by:

## Theoretical Analysis of Temperature Rising for Chilled Water in the Long Distance Transport Pipelines in Coal Mine

### Abstract

In order to provide sufficient cooling capacity for working and heading faces of the coal mine, chilled water is often transported a long distance along pipelines in deep mine, which inevitably results in its temperature rising owing to heat transfer through pipe wall and the friction heat for flow resistance. Through theoretical models for temperature increasing of the chilled water were built. It is pointed out that the temperature rising of the chilled water should be considered as a result of the synergy effects of the heat transfer and the friction heat, but theoretical analysis shows that within engineering permitting error range, the temperature increasing can be regarded as the sum caused by heat transfer and fraction heat respectively, and the calculation is simplified. The calculation analysis of the above two methods was made by taking two type of pipe whose diameters are De273 × 7 mm and De377 × 10 mm, with 15 km length in coal mine as an example, which shows that the error between the two methods is not over 0.04°C within the allowable error range. Aims at the commonly used chilled water diameter pipe, it is proposed that if the specific frictional head loss is limited between 100 Pa/m and 400 Pa/m, the proportion of the frictional temperature rising is about 24%~81% of the total, and it will increase with high flow velocity and the thin of the pipe. As a result, the friction temperature rising must not be ignored and should be paid enough attention in calculation of the chilled water temperature rising along pipe.
Go to article

## Experimental and numerical investigation of thermal flow meter

### Abstract

The paper presents analytical and numerical model calculation results of the temperature distribution along the thermal flow meter. Results show a very good conformity between numerical and analytical model. Apart from the calculation results the experimental investigations are presented. The author performed the test where a temperature of duct wall surface was measured. Therelation between mass flow rate in terms of the duct surface temperature difference was developed.
Go to article

## Analysis of radiative heat transfer impact in cross-flow tube and fin heat exchangers

### Abstract

A cross-flow, tube and fin heat exchanger of the water – air type is the subject of the analysis. The analysis had experimental and computational form and was aimed for evaluation of radiative heat transfer impact on the heat exchanger performance. The main element of the test facility was an enlarged recurrent segment of the heat exchanger under consideration. The main results of measurements are heat transfer rates, as well as temperature distributions on the surface of the first fin obtained by using the infrared camera. The experimental results have been next compared to computational ones coming from a numerical model of the test station. The model has been elaborated using computational fluid dynamics software. The computations have been accomplished for two cases: without radiative heat transfer and taking this phenomenon into account. Evaluation of the radiative heat transfer impact in considered system has been done by comparing all the received results.
Go to article

## Thermal Mechanical Stress Analysis of Ladle Lining with Integral Brick Joint

### Abstract

Based on the theory of heat transfer, the influence of expansion joints on the temperature and stress distribution of ladle lining is discussed. In view of the current expansion joint, the mathematical model of heat transfer and the three dimensional finite element model of ladle lining brick are established. By analyzing the temperature and stress distribution of ladle lining brick when the expansion joints are in different sizes, the thermal mechanical stress caused by the severe temperature difference can be reduced by the suitable expansion joint of the lining brick during the ladle baking and working process. The analysis results showed that the thermal mechanical stress which is caused by thermal expansion can be released through the 2 mm expansion joint, which is set in the building process. So we can effectively reduce the thermal mechanical stress of the ladle lining, and there is no risk of steel leakage, thus the service life of ladle can be effectively prolonged.
Go to article

## Inverse heat transfer problem in digital temperature control in plate fin and tube heat exchangers

### Abstract

The aim of the paper is a steady-state inverse heat transfer problem for plate-fin and tube heat exchangers. The objective of the process control is to adjust the number of fan revolutions per minute so that the water temperature at the heat exchanger outlet is equal to a preset value. Two control techniques were developed. The first is based on the presented mathematical model of the heat exchanger while the second is a digital proportional-integral-derivative (PID) control. The first procedure is very stable. The digital PID controller becomes unstable if the water volumetric flow rate changes significantly. The developed techniques were implemented in digital control system of the water exit temperature in a plate fin and tube heat exchanger. The measured exit temperature of the water was very close to the set value of the temperature if the first method was used. The experiments showed that the PID controller works also well but becomes frequently unstable.
Go to article

## Experimental determination of correlations for mean heat transfer coefficients in plate fin and tube heat exchangers

### Abstract

This paper presents a numerical method for determining heat transfer coefficients in cross-flow heat exchangers with extended heat exchange surfaces. Coefficients in the correlations defining heat transfer on the liquid- and air-side were determined using a nonlinear regression method. Correlation coefficients were determined from the condition that the sum of squared liquid and air temperature differences at the heat exchanger outlet, obtained by measurements and those calculated, achieved minimum. Minimum of the sum of the squares was found using the Levenberg-Marquardt method. The uncertainty in estimated parameters was determined using the error propagation rule by Gauss. The outlet temperature of the liquid and air leaving the heat exchanger was calculated using the analytical model of the heat exchanger.
Go to article

## Mathematical Modeling of Heat and Mass Transfer Process Under Heat Treatment of Grain Materials in Dense Layer

### Abstract

Postharvest processing of grain is an important step in the overall grain production process. It makes possible not only quantitative and qualitative preservation of the harvest, but also ensures maximum profit from its sale at the most favorable market conditions. Convective heat treatment (drying, cooling) guarantees commercial harvest conservation, prevents its loss, and in some cases improves the quality of the finished product. The necessity of intensification and automation of technological processes of postharvest grain processing requires the development of methods of mathematical modeling of energy-intensive processes of convective heat treatment. The determination and substantiation of optimum modes and parameters of equipment operation to ensure the preservation of grain quality is possible only when applying mathematical modeling techniques. In this work, a mathematical model of particulate material drying is presented through a system of differential equations in partial derivatives of which the variable in time and space relationship between heat and mass transfer processes in the material and a drying agent is reflected. The aim of the research was to determine the dynamics of the interrelated fields of unsteady temperature and moisture content of the material and the drying agent on the basis of mathematical models of heat and mass transfer in the layer of particulate material in convective heat approach or heat retraction. The implementation of the mathematical model proposed in the standard mathematical set allows analyzing efficiency of machines and equipment for the convective heat treatment of particulate agricultural materials in a dense layer, according the determinant technological parameters and operating modes.
Go to article

## Modeling of Melting and Resolidification in Domain of Metal Film Subjected to a Laser Pulse

### Abstract

Thermal processes in domain of thin metal film subjected to a strong laser pulse are discussed. The heating of domain considered causes the melting and next (after the end of beam impact) the resolidification of metal superficial layer. The laser action (a time dependent belltype function) is taken into account by the introduction of internal heat source in the energy equation describing the heat transfer in domain of metal film. Taking into account the extremely short duration, extreme temperature gradients and very small geometrical dimensions of the domain considered, the mathematical model of the process is based on the dual phase lag equation supplemented by the suitable boundary-initial conditions. To model the phase transitions the artificial mushy zone is introduced. At the stage of numerical modeling the Control Volume Method is used. The examples of computations are also presented.
Go to article

## Dual Phase Lag Model of Melting Process in Domain of Metal Film Subjected to an External Heat Flux

### Abstract

Heating process in the domain of thin metal film subjected to a strong laser pulse are discussed. The mathematical model of the process considered is based on the dual-phase-lag equation (DPLE) which results from the generalized form of the Fourier law. This approach is, first of all, used in the case of micro-scale heat transfer problems (the extremely short duration, extreme temperature gradients and very small geometrical dimensions of the domain considered). The external heating (a laser action) is substituted by the introduction of internal heat source to the DPLE. To model the melting process in domain of pure metal (chromium) the approach basing on the artificial mushy zone introduction is used and the main goal of investigation is the verification of influence of the artificial mushy zone ‘width’ on the results of melting modeling. At the stage of numerical modeling the author’s version of the Control Volume Method is used. In the final part of the paper the examples of computations and conclusions are presented.
Go to article