Search results

Filters

  • Journals
  • Keywords
  • Date

Search results

Number of results: 7
items per page: 25 50 75
Sort by:

Abstract

The article discusses the problem of the supply of a by-product, which is synthetic gypsum produced as a result of flue gas desulphurization in conventional power plants. The state of production and forecast for the future are presented. Currently, synthetic gypsum is almost entirely used as a raw material in the gypsum products plant located in the immediate vicinity of the power plant. Since the mid-1990s, in Poland, an increase in the production of synthetic gypsum associated with the construction of a flue gas desulphurization installation in Polish conventional power plants has been observed. In the near future, the upward trend will continue in connection with the construction of new coal units in power plants. Significant surpluses of this raw material will appear on the market, which will not be used on an ongoing basis in the production of gypsum components. However, due to the EU’s restrictive policy towards energy based on coal and lignite, within the next few decades, the share of conventional power plants in energy production will be gradually reduced. As a consequence, the supply of synthetic gypsum will also gradually decrease. Therefore, it is advisable to properly store the surplus of this raw material so that it can be used in the future. Taking this into account, it is already necessary to prepare methods for storing the expected surpluses of synthetic gypsum. For this purpose, post-mining open pits are particularly suitable, especially in mines of rock raw materials. The article proposes a legal path enabling the post-mining open pits to be transformed into a anthropogenic gypsum deposit.
Go to article

Abstract

This paper presents initial findings from research into the possibility of using gypsum binders in quartz moulding sand that could be used in the production of casting moulds and cores. For the purposes of the research two commercial types of gypsum were used as binders: building gypsum and gypsum putty. Dry components of moulding sand i.e. medium quartz sand and gypsum were mixed in proportion of 89/11 parts by weight. In order to achieve bonding properties for the binders, 5 parts by weight of water was added to the mixture of dry components. After 24 hours of adding water and mixing all the components, the moulding sand, naturally hardened, was subjected to high temperature. The moulding sand thus produced, i.e. with cheap and environmentally-friendly gypsum binders, was eventually analysed after heating (at temperatures of 300oC, 650oC and 950oC) and cooling in order to determine changes in the following parameters: LOI – loss on ignition, chemical composition and pH. Moreover, investigated were bonding bridges, before and after the moulding sand was roasted. The research results revealed differences in the structure of bonding bridges and the occurrence of automatic adhesive destruction for both types of gypsum binders. For two types of moulding sands under the investigation of the LOI exceeded 2.59wt.% (with building gypsum) or 2.84wt.% (with putty gypsum) and pH increased to ca. 12 as a result of increasing roasting temperature from 300oC to 650oC. Next, roasting at 950oC decrease value of LOI in both types of moulding sands. Moulding sand with builoding gypsum roasted at 950oC revealed a return to the value of pH parameter measured prior to annealing.
Go to article

Abstract

This article investigates possible use of waste gypsum (synthetic), recovered via flue-gas desulfurization from coal-fired electric power plants, in foundries. Energy sector, which in Eastern Europe is mostly composed from coal-fired electric power plants, is one of the largest producers of sulfur dioxide (SO2). In order to protect the environment and reduce the amount of pollution flue-gas desulfurization (FGD) is used to remove SO2 from exhaust flue gases of fossil-fuel power plants. As a result of this process gypsum waste is produced that can be used in practical applications. Strength and permeability tests have been made and also in-depth analysis of energy consumption of production process to investigate ways of preparing the synthetic gypsum for casting moulds application. This paper also assesses the chemical composition, strength and permeability of moulds made with synthetic gypsum, in comparison with moulds made with traditional GoldStar XL gypsum and with ceramic molds. Moreover examination of structure of synthetic gypsum, the investigations on derivatograph and calculations of energy consumption during production process of synthetic gypsum in wet flue-gas desulfurization were made. After analysis of gathered data it’s possible to conclude that synthetic gypsum can be used as a material for casting mould. There is no significant decrease in key properties, and on the other hand there is many additional benefits including low energy consumption, decreased cost, and decreased environmental impact.
Go to article

Abstract

The production of thin-walled castings with wall thickness in the range of 1.5 to 3 mm and below requires the development of insulation moulding sands and/or core materials. The test has been taken to develop these kind of materials. The study included a description of their thermophysical properties. Authors described problems related to the heat flow in the casting-mould system, i.e. mathematically described the main dependence of heat give-up during crystallization of the casting. The influence of the content of polyglicol on the thermophysical properties of the mould with gypsum and cement binder was examined. Using the ATD method determined were the increments ΔT1 and ΔT2 describing the temperature changes in the mould during crystallization of hypoeutectic alloy of AlSi6 and the temperature difference between casting material and mould during the crystallization. In the considered range of technological parameters a description of the heat flow kinetics was given.
Go to article

Abstract

The paper presents a detailed description of one of the newest methods of vacuum saturation of reinforcing preforms in gypsum molds. As an appropriate selection of the infiltration time is a crucial problem during realization of this process, aim of the analysis shown in the paper is to present methods of selection of subatmospheric pressure application time, a sequence of lowering and increasing pressure, as well as examining influence of structure of reinforcing preforms on efficiency of this process. To realize the aim, studies on infiltration of reinforcing preforms made of a corundum sinter of various granulation of sintered particles with a model alloy were conducted. The infiltration process analysis was carried out in two stages. The first stage consisted in investigation of influence of lengthening of sucking off air from the reinforcing preforms on efficiency of this process. In the second stage, an analysis of influence of a two-staged infiltration process on saturation of the studied materials was conducted. Because the studied preforms were of similar porosity, the obtained differences of the saturation level of particular preforms have shown, that the saturation process is influenced mostly by size of pores present in the reinforcement. Because of these differences, each reinforcement type requires individual selection of time and sequence of the saturation process. For reinforcements of higher pore diameter, it is sufficient to simply increase air sucking off time to improve the saturation, while for reinforcement of smaller pore diameter, it is a better solution to apply the two-staged process of sucking off air. Application of the proposed analysis method allows not only obtaining composite castings of higher quality, but also economical optimization of the whole process.
Go to article

Abstract

The paper presents results of initial research on the possibility of applying microwave radiation in an innovative process of making casting moulds from silica sand, where gypsum CaSO4∙2H2O was acting as a binding material. In the research were compared strengths and technological properties of moulding mixture subjected to: natural bonding process at ambient temperature or natural curing with additional microwave drying or heating with the use of microwaves immediately after samples were formed. Used in the research moulding sands, in which dry constituents i.e. sand matrix and gypsum were mixed in the ratio: 89/11. On the basis of the results of strength tests which were obtained by various curing methods, beneficial effect of using microwaves at 2.45 GHz for drying up was observed after 1, 2 and 5 hours since moisture sandmix was formed. Applying the microwaves for hardening just after forming the samples guarantees satisfactory results in the obtained mechanical parameters. In addition, it has been noted that, from a technological and economic point of view, drying the silica sand with gypsum binder in microwave field can be an alternative to traditional molding sand technologies.
Go to article

Abstract

A forecast of the negative impact exerted on the environment by selected trace elements in “Bełchatów” Power Plant has been prepared on the basis of the results of investigations into these elements’ distribution carried out as part of earlier research on coal from “Bełchatów” Field and the data on updated analyses of the content of these elements in 55 brown coal samples from test boreholes. Work in “Bełchatów” Power Plant, which is supplied with coal from “Szczerców” Field, will be accompanied by trace elements transfer. On the basis of the conducted investigations it has been found that the biosphere is most threatened by mercury emissions. As shown by the presented results of analyses and calculations, the emissions of mercury in “Bełchatów” Power Plant are low. Mercury is accumulated chiefl y in gypsum produced in the FGD plant. The content of mercury in slag and ash is low.
Go to article

This page uses 'cookies'. Learn more